硫胺素(维生素B1)在微(纳米)塑料上的吸附:pH依赖性和吸附模型。

Mehmet Kilincer, Hasan Saygin, Mustafa Ozyurek, Asli Baysal
{"title":"硫胺素(维生素B1)在微(纳米)塑料上的吸附:pH依赖性和吸附模型。","authors":"Mehmet Kilincer,&nbsp;Hasan Saygin,&nbsp;Mustafa Ozyurek,&nbsp;Asli Baysal","doi":"10.1080/10934529.2023.2216123","DOIUrl":null,"url":null,"abstract":"<p><p>As the carrier of various inorganics and organics from various media, micro(nano)plastics have an impact on the environment and human health. Recently, many studies have examined the sorption of various organics including antibiotics. However, while vitamins have critical roles in the environment and microsystems from humans to plant life, the sorption of vitamins onto micro(nano)plastics are still uninvestigated. Therefore, the aim of this study was to examine the sorption of vitamin B1 onto various micro(nano)plastics from food packages under different pHs using batch technique; sorption kinetics and isotherms models were investigated as well. The results indicated that higher capacities were obtained between 360 min to 1440 min in polypropylene and polyethylene micro(nano)plastics, and similar kinetic behaviors observed in different pHs. However, the sorption responses (sorption capacity, equilibrium time) of polyethylene terephthalate and polystyrene were varied. The sorption kinetics between vitamin B1 and micro(nano)plastics showed that the pseudo-first-order model was better to fit for polyethylene terephthalate and polystyrene compared to the pseudo-second-order kinetics, however it was changed for polypropylene and polyethylene. Moreover, the obtained results suggest a complex nature of vitamin B1 sorption, including both chemical and physical sorption occur under various pHs and polymer types.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorption of thiamin (vitamin B1) onto micro(nano)plastics: pH dependence and sorption models.\",\"authors\":\"Mehmet Kilincer,&nbsp;Hasan Saygin,&nbsp;Mustafa Ozyurek,&nbsp;Asli Baysal\",\"doi\":\"10.1080/10934529.2023.2216123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the carrier of various inorganics and organics from various media, micro(nano)plastics have an impact on the environment and human health. Recently, many studies have examined the sorption of various organics including antibiotics. However, while vitamins have critical roles in the environment and microsystems from humans to plant life, the sorption of vitamins onto micro(nano)plastics are still uninvestigated. Therefore, the aim of this study was to examine the sorption of vitamin B1 onto various micro(nano)plastics from food packages under different pHs using batch technique; sorption kinetics and isotherms models were investigated as well. The results indicated that higher capacities were obtained between 360 min to 1440 min in polypropylene and polyethylene micro(nano)plastics, and similar kinetic behaviors observed in different pHs. However, the sorption responses (sorption capacity, equilibrium time) of polyethylene terephthalate and polystyrene were varied. The sorption kinetics between vitamin B1 and micro(nano)plastics showed that the pseudo-first-order model was better to fit for polyethylene terephthalate and polystyrene compared to the pseudo-second-order kinetics, however it was changed for polypropylene and polyethylene. Moreover, the obtained results suggest a complex nature of vitamin B1 sorption, including both chemical and physical sorption occur under various pHs and polymer types.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2216123\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2216123","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

微(纳米)塑料作为各种介质中各种无机物和有机物的载体,对环境和人体健康产生影响。近年来,许多研究对包括抗生素在内的各种有机物的吸附进行了研究。然而,尽管维生素在环境和从人类到植物的微系统中起着至关重要的作用,但维生素在微(纳米)塑料上的吸附仍未得到研究。因此,本研究的目的是研究维生素B1在不同ph值下在食品包装上的各种微(纳)塑料上的吸附;研究了吸附动力学和等温线模型。结果表明,聚丙烯和聚乙烯微(纳)塑料在360 ~ 1440 min内获得较高的容量,且在不同ph值下的动力学行为相似。然而,聚对苯二甲酸乙二醇酯和聚苯乙烯的吸附响应(吸附容量、平衡时间)是不同的。对维生素B1与微(纳米)塑料的吸附动力学研究表明,与伪二级动力学相比,准一级动力学模型更适合聚对苯二甲酸乙二醇酯和聚苯乙烯,而对聚丙烯和聚乙烯则不同。此外,所得结果表明维生素B1的吸附具有复杂的性质,包括在不同ph值和聚合物类型下发生的化学和物理吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sorption of thiamin (vitamin B1) onto micro(nano)plastics: pH dependence and sorption models.

As the carrier of various inorganics and organics from various media, micro(nano)plastics have an impact on the environment and human health. Recently, many studies have examined the sorption of various organics including antibiotics. However, while vitamins have critical roles in the environment and microsystems from humans to plant life, the sorption of vitamins onto micro(nano)plastics are still uninvestigated. Therefore, the aim of this study was to examine the sorption of vitamin B1 onto various micro(nano)plastics from food packages under different pHs using batch technique; sorption kinetics and isotherms models were investigated as well. The results indicated that higher capacities were obtained between 360 min to 1440 min in polypropylene and polyethylene micro(nano)plastics, and similar kinetic behaviors observed in different pHs. However, the sorption responses (sorption capacity, equilibrium time) of polyethylene terephthalate and polystyrene were varied. The sorption kinetics between vitamin B1 and micro(nano)plastics showed that the pseudo-first-order model was better to fit for polyethylene terephthalate and polystyrene compared to the pseudo-second-order kinetics, however it was changed for polypropylene and polyethylene. Moreover, the obtained results suggest a complex nature of vitamin B1 sorption, including both chemical and physical sorption occur under various pHs and polymer types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
In vitro assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust. Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing. Machine learning, a powerful tool for the prediction of BiVO4 nanoparticles efficiency in photocatalytic degradation of organic dyes. Application of machine learning approach (artificial neural network) and shrinking core model in cobalt (II) and copper (II) leaching process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1