通过骨传导耳机听音。

IF 2.6 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Trends in Hearing Pub Date : 2023-01-01 DOI:10.1177/23312165231168741
Sudeep Surendran, Srdan Prodanovic, Stefan Stenfelt
{"title":"通过骨传导耳机听音。","authors":"Sudeep Surendran,&nbsp;Srdan Prodanovic,&nbsp;Stefan Stenfelt","doi":"10.1177/23312165231168741","DOIUrl":null,"url":null,"abstract":"<p><p>Bone conduction (BC) stimulation has mainly been used for clinical hearing assessment and hearing aids where stimulation is applied at the mastoid behind the ear. Recently, BC has become popular for communication headsets where the stimulation position often is close to the anterior part of the ear canal opening. The BC sound transmission for this stimulation position is here investigated in 21 participants by ear canal sound pressure measurements and hearing threshold assessment as well as simulations in the LiUHead. The results indicated that a stimulation position close to the ear canal opening improves the sensitivity for BC sound by around 20 dB but by up to 40 dB at some frequencies. The transcranial transmission ranges typically between -40 and -25 dB. This decreased transcranial transmission facilitates saliency of binaural cues and implies that BC headsets are suitable for virtual and augmented reality applications. The findings suggest that with BC stimulation close to the ear canal opening, the sound pressure in the ear canal dominates the perception of BC sound. With this stimulation, the ear canal pathway was estimated to be around 25 dB greater than other contributors, like skull bone vibrations, for hearing BC sound in a healthy ear. This increased contribution from the ear canal sound pressure to BC hearing means that a position close to the ear canal is not appropriate for clinical use since, in such case, a conductive hearing loss affects BC and air conduction thresholds by a similar amount.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/04/10.1177_23312165231168741.PMC10126703.pdf","citationCount":"2","resultStr":"{\"title\":\"Hearing Through Bone Conduction Headsets.\",\"authors\":\"Sudeep Surendran,&nbsp;Srdan Prodanovic,&nbsp;Stefan Stenfelt\",\"doi\":\"10.1177/23312165231168741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone conduction (BC) stimulation has mainly been used for clinical hearing assessment and hearing aids where stimulation is applied at the mastoid behind the ear. Recently, BC has become popular for communication headsets where the stimulation position often is close to the anterior part of the ear canal opening. The BC sound transmission for this stimulation position is here investigated in 21 participants by ear canal sound pressure measurements and hearing threshold assessment as well as simulations in the LiUHead. The results indicated that a stimulation position close to the ear canal opening improves the sensitivity for BC sound by around 20 dB but by up to 40 dB at some frequencies. The transcranial transmission ranges typically between -40 and -25 dB. This decreased transcranial transmission facilitates saliency of binaural cues and implies that BC headsets are suitable for virtual and augmented reality applications. The findings suggest that with BC stimulation close to the ear canal opening, the sound pressure in the ear canal dominates the perception of BC sound. With this stimulation, the ear canal pathway was estimated to be around 25 dB greater than other contributors, like skull bone vibrations, for hearing BC sound in a healthy ear. This increased contribution from the ear canal sound pressure to BC hearing means that a position close to the ear canal is not appropriate for clinical use since, in such case, a conductive hearing loss affects BC and air conduction thresholds by a similar amount.</p>\",\"PeriodicalId\":48678,\"journal\":{\"name\":\"Trends in Hearing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/04/10.1177_23312165231168741.PMC10126703.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/23312165231168741\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165231168741","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

骨传导(BC)刺激主要用于临床听力评估和助听器,在耳后乳突处施加刺激。最近,BC已成为流行的通信耳机,其刺激位置往往是靠近耳道口的前部。通过耳道声压测量和听力阈值评估以及LiUHead模拟,研究了21名参与者在这个刺激位置的BC声传输。结果表明,靠近耳道口的刺激位置可使BC声音的灵敏度提高约20 dB,但在某些频率下可提高40 dB。经颅传输范围通常在-40和-25分贝之间。这种经颅传输的减少促进了双耳信号的显著性,这意味着BC耳机适用于虚拟和增强现实应用。研究结果表明,当BC刺激靠近耳道口时,耳道内的声压主导了BC声音的感知。在这种刺激下,在健康的耳朵中,耳道通路比其他因素(如颅骨振动)高出约25分贝。耳道声压对BC听力的贡献增加意味着靠近耳道的位置不适合临床使用,因为在这种情况下,传导性听力损失对BC和空气传导阈值的影响相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hearing Through Bone Conduction Headsets.

Bone conduction (BC) stimulation has mainly been used for clinical hearing assessment and hearing aids where stimulation is applied at the mastoid behind the ear. Recently, BC has become popular for communication headsets where the stimulation position often is close to the anterior part of the ear canal opening. The BC sound transmission for this stimulation position is here investigated in 21 participants by ear canal sound pressure measurements and hearing threshold assessment as well as simulations in the LiUHead. The results indicated that a stimulation position close to the ear canal opening improves the sensitivity for BC sound by around 20 dB but by up to 40 dB at some frequencies. The transcranial transmission ranges typically between -40 and -25 dB. This decreased transcranial transmission facilitates saliency of binaural cues and implies that BC headsets are suitable for virtual and augmented reality applications. The findings suggest that with BC stimulation close to the ear canal opening, the sound pressure in the ear canal dominates the perception of BC sound. With this stimulation, the ear canal pathway was estimated to be around 25 dB greater than other contributors, like skull bone vibrations, for hearing BC sound in a healthy ear. This increased contribution from the ear canal sound pressure to BC hearing means that a position close to the ear canal is not appropriate for clinical use since, in such case, a conductive hearing loss affects BC and air conduction thresholds by a similar amount.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Hearing
Trends in Hearing AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍: Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.
期刊最新文献
Adaptation to Noise in Spectrotemporal Modulation Detection and Word Recognition On the Feasibility of Using Behavioral Listening Effort Test Methods to Evaluate Auditory Performance in Cochlear Implant Users Focusing on Positive Listening Experiences Improves Speech Intelligibility in Experienced Hearing Aid Users (Why) Do Transparent Hearing Devices Impair Speech Perception in Collocated Noise? Remixing Preferences for Western Instrumental Classical Music of Bilateral Cochlear Implant Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1