Swaroop Aradhya, Flavia M. Facio, Hillery Metz, Toby Manders, Alexandre Colavin, Yuya Kobayashi, Keith Nykamp, Britt Johnson, Robert L. Nussbaum
{"title":"人工智能在临床实验室基因组学中的应用。","authors":"Swaroop Aradhya, Flavia M. Facio, Hillery Metz, Toby Manders, Alexandre Colavin, Yuya Kobayashi, Keith Nykamp, Britt Johnson, Robert L. Nussbaum","doi":"10.1002/ajmg.c.32057","DOIUrl":null,"url":null,"abstract":"<p>The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of “big data” in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.</p>","PeriodicalId":7445,"journal":{"name":"American Journal of Medical Genetics Part C: Seminars in Medical Genetics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.c.32057","citationCount":"3","resultStr":"{\"title\":\"Applications of artificial intelligence in clinical laboratory genomics\",\"authors\":\"Swaroop Aradhya, Flavia M. Facio, Hillery Metz, Toby Manders, Alexandre Colavin, Yuya Kobayashi, Keith Nykamp, Britt Johnson, Robert L. Nussbaum\",\"doi\":\"10.1002/ajmg.c.32057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of “big data” in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.</p>\",\"PeriodicalId\":7445,\"journal\":{\"name\":\"American Journal of Medical Genetics Part C: Seminars in Medical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.c.32057\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Medical Genetics Part C: Seminars in Medical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ajmg.c.32057\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part C: Seminars in Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ajmg.c.32057","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Applications of artificial intelligence in clinical laboratory genomics
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of “big data” in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
期刊介绍:
Seminars in Medical Genetics, Part C of the American Journal of Medical Genetics (AJMG) , serves as both an educational resource and review forum, providing critical, in-depth retrospectives for students, practitioners, and associated professionals working in fields of human and medical genetics. Each issue is guest edited by a researcher in a featured area of genetics, offering a collection of thematic reviews from specialists around the world. Seminars in Medical Genetics publishes four times per year.