AKR1C2在人类肿瘤中的功能、耐药及预后作用。

IF 2 4区 医学 Q3 ONCOLOGY Neoplasma Pub Date : 2023-06-01 DOI:10.4149/neo_2023_230206N66
Zhao Wang, Yue Feng, Jiayu Song, Di Sun, Yun-Yan Zhang
{"title":"AKR1C2在人类肿瘤中的功能、耐药及预后作用。","authors":"Zhao Wang, Yue Feng, Jiayu Song, Di Sun, Yun-Yan Zhang","doi":"10.4149/neo_2023_230206N66","DOIUrl":null,"url":null,"abstract":"Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":"70 3","pages":"319-332"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function, drug resistance and prognostic effect of AKR1C2 in human cancer.\",\"authors\":\"Zhao Wang, Yue Feng, Jiayu Song, Di Sun, Yun-Yan Zhang\",\"doi\":\"10.4149/neo_2023_230206N66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.\",\"PeriodicalId\":19266,\"journal\":{\"name\":\"Neoplasma\",\"volume\":\"70 3\",\"pages\":\"319-332\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4149/neo_2023_230206N66\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2023_230206N66","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

醛酮还原酶(ARKs)是一类依赖于烟酰胺腺嘌呤二核苷酸(NADH)和烟酰胺腺嘌呤二核苷酸磷酸(NADPH)催化羰基的还原酶,广泛存在于各种生物体中,在人体的生理和病理过程中起着重要作用。Aldo-keto还原酶家族1成员C2 (AKR1C2)作为人类ARKs家族的一员,可以调节类固醇激素,在许多癌症中异常表达。根据肿瘤是否受激素影响,我们将恶性肿瘤分为激素依赖型和激素独立型。研究表明,AKR1C2参与调节肿瘤侵袭、迁移等恶性表型,消除活性氧(reactive oxygen species, ROS),促进肿瘤细胞化疗耐药,在某些癌症中具有预后价值。本文主要探讨AKR1C2在不同类型肿瘤中的作用及临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Function, drug resistance and prognostic effect of AKR1C2 in human cancer.
Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neoplasma
Neoplasma 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
238
审稿时长
3 months
期刊介绍: The journal Neoplasma publishes articles on experimental and clinical oncology and cancer epidemiology.
期刊最新文献
Six2 regulates the malignant progression and 5-FU resistance of hepatocellular carcinoma through the PI3K/AKT/mTOR pathway and DNMT1/E-cadherin methylation mechanism. Protein level of epithelial membrane protein (EMP) 1, EMP 2, and EMP 3 in carcinoma of unknown primary. The impact of c-Met inhibition on molecular features and metastatic potential of melanoma cells. The real-world comparison of non-small cell lung cancer survival outcomes depending on immunotherapy treatment and PD-L1 expression level. Albumin bound-paclitaxel combined with anlotinib and immunotherapy in the second-line treatment of ES-SCLC: a retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1