Xiaohui Ma, Dafu Ru, Diego F Morales-Briones, Fengyuan Mei, Jingjing Wu, Jianquan Liu, Shengdan Wu
{"title":"荒漠灌木西伯利亚白刺(Nitraria sibirica)基因组序列与盐度适应。","authors":"Xiaohui Ma, Dafu Ru, Diego F Morales-Briones, Fengyuan Mei, Jingjing Wu, Jianquan Liu, Shengdan Wu","doi":"10.1093/dnares/dsad011","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic bases of halophytes for salinity tolerance are crucial for genetically breeding salt-tolerant crops. All natural Nitrariaceae species that exclusively occur in arid environments are highly tolerant to salt stress, but the underlying genomic bases to this adaptation remain unknown. Here we present a high-quality, chromosome-level genome sequence of Nitraria sibirica, with an assembled size of 456.66 Mb and 23,365 annotated genes. Phylogenomic analyses confirmed N. sibirica as the sister to all other sampled representatives from other families in Sapindales, and no lineage-specific whole-genome duplication was found except the gamma triplication event. Still, we found that the genes involved in K + retention, energy supply, and Fe absorption expanded greatly in N. sibirica. Deep transcriptome analyses showed that leaf photosynthesis and cuticular wax formation in roots were enhanced under salt treatments. Furthermore, many transcription factors involved in salt tolerance changed their expressions significantly and displayed tissue- and concentration-dependent signaling in response to salt stress. Additionally, we found vacuolar Na + compartmentalization is an ongoing process under salt treatment, while Na + exclusion tends to function at high salt concentrations. These genomic and transcriptomic changes conferred salt tolerance in N. sibirica and pave the way for future breeding of salt-tolerant crops.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/78/dsad011.PMC10211498.pdf","citationCount":"0","resultStr":"{\"title\":\"Genome sequence and salinity adaptation of the desert shrub Nitraria sibirica (Nitrariaceae, Sapindales).\",\"authors\":\"Xiaohui Ma, Dafu Ru, Diego F Morales-Briones, Fengyuan Mei, Jingjing Wu, Jianquan Liu, Shengdan Wu\",\"doi\":\"10.1093/dnares/dsad011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genetic bases of halophytes for salinity tolerance are crucial for genetically breeding salt-tolerant crops. All natural Nitrariaceae species that exclusively occur in arid environments are highly tolerant to salt stress, but the underlying genomic bases to this adaptation remain unknown. Here we present a high-quality, chromosome-level genome sequence of Nitraria sibirica, with an assembled size of 456.66 Mb and 23,365 annotated genes. Phylogenomic analyses confirmed N. sibirica as the sister to all other sampled representatives from other families in Sapindales, and no lineage-specific whole-genome duplication was found except the gamma triplication event. Still, we found that the genes involved in K + retention, energy supply, and Fe absorption expanded greatly in N. sibirica. Deep transcriptome analyses showed that leaf photosynthesis and cuticular wax formation in roots were enhanced under salt treatments. Furthermore, many transcription factors involved in salt tolerance changed their expressions significantly and displayed tissue- and concentration-dependent signaling in response to salt stress. Additionally, we found vacuolar Na + compartmentalization is an ongoing process under salt treatment, while Na + exclusion tends to function at high salt concentrations. These genomic and transcriptomic changes conferred salt tolerance in N. sibirica and pave the way for future breeding of salt-tolerant crops.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/78/dsad011.PMC10211498.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsad011\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsad011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genome sequence and salinity adaptation of the desert shrub Nitraria sibirica (Nitrariaceae, Sapindales).
The genetic bases of halophytes for salinity tolerance are crucial for genetically breeding salt-tolerant crops. All natural Nitrariaceae species that exclusively occur in arid environments are highly tolerant to salt stress, but the underlying genomic bases to this adaptation remain unknown. Here we present a high-quality, chromosome-level genome sequence of Nitraria sibirica, with an assembled size of 456.66 Mb and 23,365 annotated genes. Phylogenomic analyses confirmed N. sibirica as the sister to all other sampled representatives from other families in Sapindales, and no lineage-specific whole-genome duplication was found except the gamma triplication event. Still, we found that the genes involved in K + retention, energy supply, and Fe absorption expanded greatly in N. sibirica. Deep transcriptome analyses showed that leaf photosynthesis and cuticular wax formation in roots were enhanced under salt treatments. Furthermore, many transcription factors involved in salt tolerance changed their expressions significantly and displayed tissue- and concentration-dependent signaling in response to salt stress. Additionally, we found vacuolar Na + compartmentalization is an ongoing process under salt treatment, while Na + exclusion tends to function at high salt concentrations. These genomic and transcriptomic changes conferred salt tolerance in N. sibirica and pave the way for future breeding of salt-tolerant crops.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.