Ilse Vanhorebeek, Grégoire Coppens, Fabian Güiza, Inge Derese, Pieter J Wouters, Koen F Joosten, Sascha C Verbruggen, Greet Van den Berghe
{"title":"小儿危重疾病后两年类固醇生成途径基因内的异常DNA甲基化与身高发育迟缓的关系","authors":"Ilse Vanhorebeek, Grégoire Coppens, Fabian Güiza, Inge Derese, Pieter J Wouters, Koen F Joosten, Sascha C Verbruggen, Greet Van den Berghe","doi":"10.1186/s13148-023-01530-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Former critically ill children show an epigenetic age deceleration 2 years after paediatric intensive care unit (PICU) admission as compared with normally developing healthy children, with stunted growth in height 2 years further in time as physical correlate. This was particularly pronounced in children who were 6 years or older at the time of critical illness. As this age roughly corresponds to the onset of adrenarche and further pubertal development, a relation with altered activation of endocrine pathways is plausible. We hypothesised that children who have been admitted to the PICU, sex- and age-dependently show long-term abnormal DNA methylation within genes involved in steroid hormone synthesis or steroid sulphation/desulphation, possibly aggravated by in-PICU glucocorticoid treatment, which may contribute to stunted growth in height further in time after critical illness.</p><p><strong>Results: </strong>In this preplanned secondary analysis of the multicentre PEPaNIC-RCT and its follow-up, we compared the methylation status of genes involved in the biosynthesis of steroid hormones (aldosterone, cortisol and sex hormones) and steroid sulphation/desulphation in buccal mucosa DNA (Infinium HumanMethylation EPIC BeadChip) from former PICU patients at 2-year follow-up (n = 818) and healthy children with comparable sex and age (n = 392). Adjusting for technical variation and baseline risk factors and corrected for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 23 CpG sites (within CYP11A1, POR, CYB5A, HSD17B1, HSD17B2, HSD17B3, HSD17B6, HSD17B10, HSD17B12, CYP19A1, CYP21A2, and CYP11B2) and 4 DNA regions (within HSD17B2, HSD17B8, and HSD17B10) that were mostly hypomethylated. These abnormalities were partially sex- (1 CpG site) or age-dependent (7 CpG sites) and affected by glucocorticoid treatment (3 CpG sites). Finally, multivariable linear models identified robust associations of abnormal methylation of steroidogenic genes with shorter height further in time, at 4-year follow-up.</p><p><strong>Conclusions: </strong>Children who have been critically ill show abnormal methylation within steroidogenic genes 2 years after PICU admission, which explained part of the stunted growth in height at 4-year follow-up. The abnormalities in DNA methylation may point to a long-term disturbance in the balance between active sex steroids and mineralocorticoids/glucocorticoids after paediatric critical illness, which requires further investigation.</p>","PeriodicalId":48652,"journal":{"name":"Clinical Epigenetics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Abnormal DNA methylation within genes of the steroidogenesis pathway two years after paediatric critical illness and association with stunted growth in height further in time.\",\"authors\":\"Ilse Vanhorebeek, Grégoire Coppens, Fabian Güiza, Inge Derese, Pieter J Wouters, Koen F Joosten, Sascha C Verbruggen, Greet Van den Berghe\",\"doi\":\"10.1186/s13148-023-01530-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Former critically ill children show an epigenetic age deceleration 2 years after paediatric intensive care unit (PICU) admission as compared with normally developing healthy children, with stunted growth in height 2 years further in time as physical correlate. This was particularly pronounced in children who were 6 years or older at the time of critical illness. As this age roughly corresponds to the onset of adrenarche and further pubertal development, a relation with altered activation of endocrine pathways is plausible. We hypothesised that children who have been admitted to the PICU, sex- and age-dependently show long-term abnormal DNA methylation within genes involved in steroid hormone synthesis or steroid sulphation/desulphation, possibly aggravated by in-PICU glucocorticoid treatment, which may contribute to stunted growth in height further in time after critical illness.</p><p><strong>Results: </strong>In this preplanned secondary analysis of the multicentre PEPaNIC-RCT and its follow-up, we compared the methylation status of genes involved in the biosynthesis of steroid hormones (aldosterone, cortisol and sex hormones) and steroid sulphation/desulphation in buccal mucosa DNA (Infinium HumanMethylation EPIC BeadChip) from former PICU patients at 2-year follow-up (n = 818) and healthy children with comparable sex and age (n = 392). Adjusting for technical variation and baseline risk factors and corrected for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 23 CpG sites (within CYP11A1, POR, CYB5A, HSD17B1, HSD17B2, HSD17B3, HSD17B6, HSD17B10, HSD17B12, CYP19A1, CYP21A2, and CYP11B2) and 4 DNA regions (within HSD17B2, HSD17B8, and HSD17B10) that were mostly hypomethylated. These abnormalities were partially sex- (1 CpG site) or age-dependent (7 CpG sites) and affected by glucocorticoid treatment (3 CpG sites). Finally, multivariable linear models identified robust associations of abnormal methylation of steroidogenic genes with shorter height further in time, at 4-year follow-up.</p><p><strong>Conclusions: </strong>Children who have been critically ill show abnormal methylation within steroidogenic genes 2 years after PICU admission, which explained part of the stunted growth in height at 4-year follow-up. The abnormalities in DNA methylation may point to a long-term disturbance in the balance between active sex steroids and mineralocorticoids/glucocorticoids after paediatric critical illness, which requires further investigation.</p>\",\"PeriodicalId\":48652,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-023-01530-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-023-01530-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Abnormal DNA methylation within genes of the steroidogenesis pathway two years after paediatric critical illness and association with stunted growth in height further in time.
Background: Former critically ill children show an epigenetic age deceleration 2 years after paediatric intensive care unit (PICU) admission as compared with normally developing healthy children, with stunted growth in height 2 years further in time as physical correlate. This was particularly pronounced in children who were 6 years or older at the time of critical illness. As this age roughly corresponds to the onset of adrenarche and further pubertal development, a relation with altered activation of endocrine pathways is plausible. We hypothesised that children who have been admitted to the PICU, sex- and age-dependently show long-term abnormal DNA methylation within genes involved in steroid hormone synthesis or steroid sulphation/desulphation, possibly aggravated by in-PICU glucocorticoid treatment, which may contribute to stunted growth in height further in time after critical illness.
Results: In this preplanned secondary analysis of the multicentre PEPaNIC-RCT and its follow-up, we compared the methylation status of genes involved in the biosynthesis of steroid hormones (aldosterone, cortisol and sex hormones) and steroid sulphation/desulphation in buccal mucosa DNA (Infinium HumanMethylation EPIC BeadChip) from former PICU patients at 2-year follow-up (n = 818) and healthy children with comparable sex and age (n = 392). Adjusting for technical variation and baseline risk factors and corrected for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 23 CpG sites (within CYP11A1, POR, CYB5A, HSD17B1, HSD17B2, HSD17B3, HSD17B6, HSD17B10, HSD17B12, CYP19A1, CYP21A2, and CYP11B2) and 4 DNA regions (within HSD17B2, HSD17B8, and HSD17B10) that were mostly hypomethylated. These abnormalities were partially sex- (1 CpG site) or age-dependent (7 CpG sites) and affected by glucocorticoid treatment (3 CpG sites). Finally, multivariable linear models identified robust associations of abnormal methylation of steroidogenic genes with shorter height further in time, at 4-year follow-up.
Conclusions: Children who have been critically ill show abnormal methylation within steroidogenic genes 2 years after PICU admission, which explained part of the stunted growth in height at 4-year follow-up. The abnormalities in DNA methylation may point to a long-term disturbance in the balance between active sex steroids and mineralocorticoids/glucocorticoids after paediatric critical illness, which requires further investigation.
Clinical EpigeneticsBiochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
8.90
自引率
5.30%
发文量
150
审稿时长
12 weeks
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.