Lena Böhnke, Lucia Zhou-Yang, Silvia Pelucchi, Flora Kogler, Daniela Frantal, Florian Schön, Stina Lagerström, Oliver Borgogno, Jennifer Baltazar, Joseph R Herdy, Sarah Kittel-Schneider, Michaela Defrancesco, Jerome Mertens
{"title":"用Dorsomorphin同源物1化学替代Noggin实现低成本的直接神经元转换。","authors":"Lena Böhnke, Lucia Zhou-Yang, Silvia Pelucchi, Flora Kogler, Daniela Frantal, Florian Schön, Stina Lagerström, Oliver Borgogno, Jennifer Baltazar, Joseph R Herdy, Sarah Kittel-Schneider, Michaela Defrancesco, Jerome Mertens","doi":"10.1089/cell.2021.0200","DOIUrl":null,"url":null,"abstract":"<p><p>The direct conversion of adult human skin fibroblasts (FBs) into induced neurons (iNs) represents a useful technology to generate donor-specific adult-like human neurons. Disease modeling studies rely on the consistently efficient conversion of relatively large cohorts of FBs. Despite the identification of several small molecular enhancers, high-yield protocols still demand addition of recombinant Noggin. To identify a replacement to circumvent the technical and economic challenges associated with Noggin, we assessed dynamic gene expression trajectories of transforming growth factor-β signaling during FB-to-iN conversion. We identified ALK2 (ACVR1) of the bone morphogenic protein branch to possess the highest initial transcript abundance in FBs and the steepest decline during successful neuronal conversion. We thus assessed the efficacy of dorsomorphin homolog 1 (DMH1), a highly selective ALK2-inhibitor, for its potential to replace Noggin. Conversion media containing DMH1 (+DMH1) indeed enhanced conversion efficiencies over basic SMAD inhibition (tSMADi), yielding similar βIII-tubulin (TUBB3) purities as conversion media containing Noggin (+Noggin). Furthermore, +DMH1 induced high yields of iNs with clear neuronal morphologies that are positive for the mature neuronal marker NeuN. Validation of +DMH1 for iN conversion of FBs from 15 adult human donors further demonstrates that Noggin-free conversion consistently yields iN cultures that display high βIII-tubulin numbers with synaptic structures and basic spontaneous neuronal activity at a third of the cost.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical Replacement of Noggin with Dorsomorphin Homolog 1 for Cost-Effective Direct Neuronal Conversion.\",\"authors\":\"Lena Böhnke, Lucia Zhou-Yang, Silvia Pelucchi, Flora Kogler, Daniela Frantal, Florian Schön, Stina Lagerström, Oliver Borgogno, Jennifer Baltazar, Joseph R Herdy, Sarah Kittel-Schneider, Michaela Defrancesco, Jerome Mertens\",\"doi\":\"10.1089/cell.2021.0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The direct conversion of adult human skin fibroblasts (FBs) into induced neurons (iNs) represents a useful technology to generate donor-specific adult-like human neurons. Disease modeling studies rely on the consistently efficient conversion of relatively large cohorts of FBs. Despite the identification of several small molecular enhancers, high-yield protocols still demand addition of recombinant Noggin. To identify a replacement to circumvent the technical and economic challenges associated with Noggin, we assessed dynamic gene expression trajectories of transforming growth factor-β signaling during FB-to-iN conversion. We identified ALK2 (ACVR1) of the bone morphogenic protein branch to possess the highest initial transcript abundance in FBs and the steepest decline during successful neuronal conversion. We thus assessed the efficacy of dorsomorphin homolog 1 (DMH1), a highly selective ALK2-inhibitor, for its potential to replace Noggin. Conversion media containing DMH1 (+DMH1) indeed enhanced conversion efficiencies over basic SMAD inhibition (tSMADi), yielding similar βIII-tubulin (TUBB3) purities as conversion media containing Noggin (+Noggin). Furthermore, +DMH1 induced high yields of iNs with clear neuronal morphologies that are positive for the mature neuronal marker NeuN. Validation of +DMH1 for iN conversion of FBs from 15 adult human donors further demonstrates that Noggin-free conversion consistently yields iN cultures that display high βIII-tubulin numbers with synaptic structures and basic spontaneous neuronal activity at a third of the cost.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2021.0200\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2021.0200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
成人皮肤成纤维细胞(FBs)直接转化为诱导神经元(iNs)是一种产生供体特异性成人样人类神经元的有用技术。疾病建模研究依赖于相对较大的FBs队列持续有效的转换。尽管确定了几种小分子增强剂,但高产方案仍然需要添加重组Noggin。为了找到一种替代品来规避与Noggin相关的技术和经济挑战,我们评估了fb到in转化过程中转化生长因子-β信号的动态基因表达轨迹。我们发现骨形态发生蛋白分支的ALK2 (ACVR1)在FBs中具有最高的初始转录丰度,并且在成功的神经元转化过程中具有最急剧的下降。因此,我们评估了dorsomorphin同源物1 (DMH1)的有效性,这是一种高度选择性的alk2抑制剂,因为它有可能取代Noggin。含有DMH1 (+DMH1)的转化介质确实比基本的SMAD抑制(tSMADi)提高了转化效率,产生的β iii -微管蛋白(TUBB3)纯度与含有Noggin (+Noggin)的转化介质相似。此外,+DMH1诱导了高产量的具有清晰神经元形态的神经元,对成熟的神经元标记物NeuN呈阳性。验证+DMH1对15名成人供体造血干细胞iN转化的效果进一步表明,无脑蛋白转化持续产生具有高β iii -微管蛋白数量、突触结构和基本自发神经元活性的iN培养物,成本仅为三分之一。
Chemical Replacement of Noggin with Dorsomorphin Homolog 1 for Cost-Effective Direct Neuronal Conversion.
The direct conversion of adult human skin fibroblasts (FBs) into induced neurons (iNs) represents a useful technology to generate donor-specific adult-like human neurons. Disease modeling studies rely on the consistently efficient conversion of relatively large cohorts of FBs. Despite the identification of several small molecular enhancers, high-yield protocols still demand addition of recombinant Noggin. To identify a replacement to circumvent the technical and economic challenges associated with Noggin, we assessed dynamic gene expression trajectories of transforming growth factor-β signaling during FB-to-iN conversion. We identified ALK2 (ACVR1) of the bone morphogenic protein branch to possess the highest initial transcript abundance in FBs and the steepest decline during successful neuronal conversion. We thus assessed the efficacy of dorsomorphin homolog 1 (DMH1), a highly selective ALK2-inhibitor, for its potential to replace Noggin. Conversion media containing DMH1 (+DMH1) indeed enhanced conversion efficiencies over basic SMAD inhibition (tSMADi), yielding similar βIII-tubulin (TUBB3) purities as conversion media containing Noggin (+Noggin). Furthermore, +DMH1 induced high yields of iNs with clear neuronal morphologies that are positive for the mature neuronal marker NeuN. Validation of +DMH1 for iN conversion of FBs from 15 adult human donors further demonstrates that Noggin-free conversion consistently yields iN cultures that display high βIII-tubulin numbers with synaptic structures and basic spontaneous neuronal activity at a third of the cost.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.