John T. Langford MD , Luis Gonzalez PhD , Ryosuke Taniguchi MD, PhD , Anand Brahmandam MD , Weichang Zhang MD, PhD , Alan Dardik MD, PhD
{"title":"EphB4单体在主动脉移植模型中抑制慢性移植物血管病变","authors":"John T. Langford MD , Luis Gonzalez PhD , Ryosuke Taniguchi MD, PhD , Anand Brahmandam MD , Weichang Zhang MD, PhD , Alan Dardik MD, PhD","doi":"10.1016/j.jvssci.2023.100109","DOIUrl":null,"url":null,"abstract":"<div><p>T cells and macrophages play an important role in the formation of allograft vasculopathy, which is the predominant form of chronic rejection in cardiac transplants. Arteries express Ephrin-B2 as a marker of arterial identity, whereas circulating monocytes express the cognate receptor EphB4, which facilitates monocyte adhesion to the endothelial surface. Adherent monocytes transmigrate and differentiate into macrophages that activate T cells and are a main source of tissue damage during rejection. We hypothesized that inhibition of Ephrin-B2-EphB4 binding would decrease immune cell accumulation within a transplanted graft and prevent allograft vasculopathy. We used EphB4 monomer to inhibit Ephrin-B2-EphB4 binding in a rat infrarenal aortic transplant model. Rats treated with EphB4 monomer had fewer macrophages and T cells in the aortic allografts at 28 days, as well as significantly less neointima formation. These data show that the Ephin-B2-EphB4 axis may be an important target for prevention or treatment of allograft vasculopathy.</p></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"4 ","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/97/main.PMC10372308.pdf","citationCount":"0","resultStr":"{\"title\":\"EphB4 monomer inhibits chronic graft vasculopathy in an aortic transplant model\",\"authors\":\"John T. Langford MD , Luis Gonzalez PhD , Ryosuke Taniguchi MD, PhD , Anand Brahmandam MD , Weichang Zhang MD, PhD , Alan Dardik MD, PhD\",\"doi\":\"10.1016/j.jvssci.2023.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>T cells and macrophages play an important role in the formation of allograft vasculopathy, which is the predominant form of chronic rejection in cardiac transplants. Arteries express Ephrin-B2 as a marker of arterial identity, whereas circulating monocytes express the cognate receptor EphB4, which facilitates monocyte adhesion to the endothelial surface. Adherent monocytes transmigrate and differentiate into macrophages that activate T cells and are a main source of tissue damage during rejection. We hypothesized that inhibition of Ephrin-B2-EphB4 binding would decrease immune cell accumulation within a transplanted graft and prevent allograft vasculopathy. We used EphB4 monomer to inhibit Ephrin-B2-EphB4 binding in a rat infrarenal aortic transplant model. Rats treated with EphB4 monomer had fewer macrophages and T cells in the aortic allografts at 28 days, as well as significantly less neointima formation. These data show that the Ephin-B2-EphB4 axis may be an important target for prevention or treatment of allograft vasculopathy.</p></div>\",\"PeriodicalId\":74035,\"journal\":{\"name\":\"JVS-vascular science\",\"volume\":\"4 \",\"pages\":\"Article 100109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/97/main.PMC10372308.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JVS-vascular science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666350323000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JVS-vascular science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666350323000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
EphB4 monomer inhibits chronic graft vasculopathy in an aortic transplant model
T cells and macrophages play an important role in the formation of allograft vasculopathy, which is the predominant form of chronic rejection in cardiac transplants. Arteries express Ephrin-B2 as a marker of arterial identity, whereas circulating monocytes express the cognate receptor EphB4, which facilitates monocyte adhesion to the endothelial surface. Adherent monocytes transmigrate and differentiate into macrophages that activate T cells and are a main source of tissue damage during rejection. We hypothesized that inhibition of Ephrin-B2-EphB4 binding would decrease immune cell accumulation within a transplanted graft and prevent allograft vasculopathy. We used EphB4 monomer to inhibit Ephrin-B2-EphB4 binding in a rat infrarenal aortic transplant model. Rats treated with EphB4 monomer had fewer macrophages and T cells in the aortic allografts at 28 days, as well as significantly less neointima formation. These data show that the Ephin-B2-EphB4 axis may be an important target for prevention or treatment of allograft vasculopathy.