机械敏感离子通道、轴突生长和再生。

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Neuroscientist Pub Date : 2023-08-01 DOI:10.1177/10738584221088575
Leann Miles, Jackson Powell, Casey Kozak, Yuanquan Song
{"title":"机械敏感离子通道、轴突生长和再生。","authors":"Leann Miles,&nbsp;Jackson Powell,&nbsp;Casey Kozak,&nbsp;Yuanquan Song","doi":"10.1177/10738584221088575","DOIUrl":null,"url":null,"abstract":"<p><p>Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 4","pages":"421-444"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556659/pdf/nihms-1819329.pdf","citationCount":"3","resultStr":"{\"title\":\"Mechanosensitive Ion Channels, Axonal Growth, and Regeneration.\",\"authors\":\"Leann Miles,&nbsp;Jackson Powell,&nbsp;Casey Kozak,&nbsp;Yuanquan Song\",\"doi\":\"10.1177/10738584221088575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.</p>\",\"PeriodicalId\":49753,\"journal\":{\"name\":\"Neuroscientist\",\"volume\":\"29 4\",\"pages\":\"421-444\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556659/pdf/nihms-1819329.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscientist\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10738584221088575\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584221088575","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 3

摘要

细胞通过将机械刺激转化为生物信号来感知和响应机械刺激,这一过程被称为机械转导。机械转导在多种细胞功能中是必不可少的,包括组织发育、触觉敏感、疼痛和神经元寻路。在寻找机械转导的关键角色时,几个离子通道家族被确定为机械敏感的,并被证明直接被膜双分子层和细胞骨架中的机械力激活。最近,压电离子通道被发现是一种真正的机械敏感离子通道,其特性导致了一系列研究,揭示了压电蛋白的多种功能,特别是它们在神经元修复中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanosensitive Ion Channels, Axonal Growth, and Regeneration.

Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscientist
Neuroscientist 医学-临床神经学
CiteScore
11.50
自引率
0.00%
发文量
68
期刊介绍: Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.
期刊最新文献
A new frontier in the treatment of schizophrenia. Forthcoming Articles. Single-Nuclei Multiomics of the Prefrontal Cortex: 388 Brains Tell a Powerful Story. The Day After. Activity-Dependent Synapse Refinement: From Mechanisms to Molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1