Christine N Palermo, Roberta R Fulthorpe, Rosemary Saati, Steven M Short
{"title":"对五大湖港口受损浮游细菌基因的分析揭示了季节性代谢变化和以前未发现的蓝藻。","authors":"Christine N Palermo, Roberta R Fulthorpe, Rosemary Saati, Steven M Short","doi":"10.1139/cjm-2022-0252","DOIUrl":null,"url":null,"abstract":"<p><p>Hamilton Harbour is an impaired embayment of Lake Ontario that experiences seasonal algal blooms despite decades of remedial efforts. To study the harbour's cyanobacterial and heterotrophic bacterial communities, we extracted and sequenced community DNA from surface water samples collected biweekly from different sites during summer and fall. Assembled contigs were annotated at the phylum level, and Cyanobacteria were further characterized at order and species levels. Actinobacteria were most abundant in early summer, while Cyanobacteria were dominant in mid-summer. <i>Microcystis aeruginosa</i> and <i>Limnoraphis robusta</i> were most abundant throughout the sampling period, expanding the documented diversity of Cyanobacteria in Hamilton Harbour. Functional annotations were performed using the MG-RAST pipeline and SEED database, revealing that genes for photosynthesis, nitrogen metabolism, and aromatic compound metabolism varied in relative abundances over the season, while phosphorus metabolism was consistent, suggesting that these genes remained essential despite fluctuating environmental conditions and community succession. We observed seasonal shifts from anoxygenic to oxygenic phototrophy, and from ammonia assimilation to nitrogen fixation, coupled with decreasing heterotrophic bacteria and increasing Cyanobacteria relative abundances. Our data contribute important insights into bacterial taxa and functional potentials in Hamilton Harbour, revealing seasonal and spatial dynamics that can be used to inform ongoing remediation efforts.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of bacterioplankton genes in an impaired Great Lakes harbour reveals seasonal metabolic shifts and a previously undetected cyanobacterium.\",\"authors\":\"Christine N Palermo, Roberta R Fulthorpe, Rosemary Saati, Steven M Short\",\"doi\":\"10.1139/cjm-2022-0252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hamilton Harbour is an impaired embayment of Lake Ontario that experiences seasonal algal blooms despite decades of remedial efforts. To study the harbour's cyanobacterial and heterotrophic bacterial communities, we extracted and sequenced community DNA from surface water samples collected biweekly from different sites during summer and fall. Assembled contigs were annotated at the phylum level, and Cyanobacteria were further characterized at order and species levels. Actinobacteria were most abundant in early summer, while Cyanobacteria were dominant in mid-summer. <i>Microcystis aeruginosa</i> and <i>Limnoraphis robusta</i> were most abundant throughout the sampling period, expanding the documented diversity of Cyanobacteria in Hamilton Harbour. Functional annotations were performed using the MG-RAST pipeline and SEED database, revealing that genes for photosynthesis, nitrogen metabolism, and aromatic compound metabolism varied in relative abundances over the season, while phosphorus metabolism was consistent, suggesting that these genes remained essential despite fluctuating environmental conditions and community succession. We observed seasonal shifts from anoxygenic to oxygenic phototrophy, and from ammonia assimilation to nitrogen fixation, coupled with decreasing heterotrophic bacteria and increasing Cyanobacteria relative abundances. Our data contribute important insights into bacterial taxa and functional potentials in Hamilton Harbour, revealing seasonal and spatial dynamics that can be used to inform ongoing remediation efforts.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2022-0252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2022-0252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of bacterioplankton genes in an impaired Great Lakes harbour reveals seasonal metabolic shifts and a previously undetected cyanobacterium.
Hamilton Harbour is an impaired embayment of Lake Ontario that experiences seasonal algal blooms despite decades of remedial efforts. To study the harbour's cyanobacterial and heterotrophic bacterial communities, we extracted and sequenced community DNA from surface water samples collected biweekly from different sites during summer and fall. Assembled contigs were annotated at the phylum level, and Cyanobacteria were further characterized at order and species levels. Actinobacteria were most abundant in early summer, while Cyanobacteria were dominant in mid-summer. Microcystis aeruginosa and Limnoraphis robusta were most abundant throughout the sampling period, expanding the documented diversity of Cyanobacteria in Hamilton Harbour. Functional annotations were performed using the MG-RAST pipeline and SEED database, revealing that genes for photosynthesis, nitrogen metabolism, and aromatic compound metabolism varied in relative abundances over the season, while phosphorus metabolism was consistent, suggesting that these genes remained essential despite fluctuating environmental conditions and community succession. We observed seasonal shifts from anoxygenic to oxygenic phototrophy, and from ammonia assimilation to nitrogen fixation, coupled with decreasing heterotrophic bacteria and increasing Cyanobacteria relative abundances. Our data contribute important insights into bacterial taxa and functional potentials in Hamilton Harbour, revealing seasonal and spatial dynamics that can be used to inform ongoing remediation efforts.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.