水蛋白衰减全反射红外吸收光谱到透射的转化。

Q3 Biochemistry, Genetics and Molecular Biology QRB Discovery Pub Date : 2020-01-01 DOI:10.1017/qrd.2020.11
Alison Rodger, Michael J Steel, Sophia C Goodchild, Nikola P Chmel, Andrew Reason
{"title":"水蛋白衰减全反射红外吸收光谱到透射的转化。","authors":"Alison Rodger,&nbsp;Michael J Steel,&nbsp;Sophia C Goodchild,&nbsp;Nikola P Chmel,&nbsp;Andrew Reason","doi":"10.1017/qrd.2020.11","DOIUrl":null,"url":null,"abstract":"<p><p>Infrared (IR) spectroscopy is increasingly being used to probe the secondary structure of proteins, especially for high-concentration samples and biopharmaceuticals in complex formulation vehicles. However, the small path lengths required for aqueous protein transmission experiments, due to high water absorbance in the amide I region of the spectrum, means that the path length is not accurately known, so only the shape of the band is ever considered. This throws away a dimension of information. Attenuated total reflectance (ATR) IR spectroscopy is much easier to implement than transmission IR spectroscopy and, for a given instrument and sample, gives reproducible spectra. However, the ATR-absorbance spectrum varies with sample concentration and instrument configuration, and its wavenumber dependence differs significantly from that observed in transmission spectroscopy. In this paper, we determine, for the first time, how to transform water and aqueous protein ATR spectra into the corresponding transmission spectra with appropriate spectral shapes and intensities. The approach is illustrated by application to water, concanavalin A, haemoglobin and lysozyme. The transformation is only as good as the available water refractive index data. A hybrid of literature data provides the best results. The transformation also allows the angle of incidence of an ATR crystal to be determined. This opens the way to using both spectral shape and spectra intensity for protein structure fitting.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"1 ","pages":"e8"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/qrd.2020.11","citationCount":"3","resultStr":"{\"title\":\"Transformation of aqueous protein attenuated total reflectance infra-red absorbance spectroscopy to transmission.\",\"authors\":\"Alison Rodger,&nbsp;Michael J Steel,&nbsp;Sophia C Goodchild,&nbsp;Nikola P Chmel,&nbsp;Andrew Reason\",\"doi\":\"10.1017/qrd.2020.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infrared (IR) spectroscopy is increasingly being used to probe the secondary structure of proteins, especially for high-concentration samples and biopharmaceuticals in complex formulation vehicles. However, the small path lengths required for aqueous protein transmission experiments, due to high water absorbance in the amide I region of the spectrum, means that the path length is not accurately known, so only the shape of the band is ever considered. This throws away a dimension of information. Attenuated total reflectance (ATR) IR spectroscopy is much easier to implement than transmission IR spectroscopy and, for a given instrument and sample, gives reproducible spectra. However, the ATR-absorbance spectrum varies with sample concentration and instrument configuration, and its wavenumber dependence differs significantly from that observed in transmission spectroscopy. In this paper, we determine, for the first time, how to transform water and aqueous protein ATR spectra into the corresponding transmission spectra with appropriate spectral shapes and intensities. The approach is illustrated by application to water, concanavalin A, haemoglobin and lysozyme. The transformation is only as good as the available water refractive index data. A hybrid of literature data provides the best results. The transformation also allows the angle of incidence of an ATR crystal to be determined. This opens the way to using both spectral shape and spectra intensity for protein structure fitting.</p>\",\"PeriodicalId\":34636,\"journal\":{\"name\":\"QRB Discovery\",\"volume\":\"1 \",\"pages\":\"e8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/qrd.2020.11\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QRB Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qrd.2020.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2020.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

红外光谱越来越多地用于探测蛋白质的二级结构,特别是用于高浓度样品和复杂配方载体中的生物制药。然而,由于光谱酰胺I区的高吸水率,水相蛋白质传输实验所需的路径长度较小,这意味着路径长度不能准确已知,因此只考虑了带的形状。这就丢掉了一个信息维度。衰减全反射(ATR)红外光谱比透射红外光谱更容易实现,并且对于给定的仪器和样品,可以给出可重复的光谱。然而,atr吸光度随样品浓度和仪器配置的不同而变化,其波数依赖性与透射光谱的观察结果有很大不同。在本文中,我们首次确定了如何将水和含水蛋白质的ATR光谱转换成具有适当光谱形状和强度的相应透射光谱。通过对水、豆豆蛋白A、血红蛋白和溶菌酶的应用说明了该方法。该变换仅与现有的水折射率数据一样好。文献数据的混合提供了最好的结果。变换还允许确定ATR晶体的入射角。这为同时使用光谱形状和光谱强度进行蛋白质结构拟合开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformation of aqueous protein attenuated total reflectance infra-red absorbance spectroscopy to transmission.

Infrared (IR) spectroscopy is increasingly being used to probe the secondary structure of proteins, especially for high-concentration samples and biopharmaceuticals in complex formulation vehicles. However, the small path lengths required for aqueous protein transmission experiments, due to high water absorbance in the amide I region of the spectrum, means that the path length is not accurately known, so only the shape of the band is ever considered. This throws away a dimension of information. Attenuated total reflectance (ATR) IR spectroscopy is much easier to implement than transmission IR spectroscopy and, for a given instrument and sample, gives reproducible spectra. However, the ATR-absorbance spectrum varies with sample concentration and instrument configuration, and its wavenumber dependence differs significantly from that observed in transmission spectroscopy. In this paper, we determine, for the first time, how to transform water and aqueous protein ATR spectra into the corresponding transmission spectra with appropriate spectral shapes and intensities. The approach is illustrated by application to water, concanavalin A, haemoglobin and lysozyme. The transformation is only as good as the available water refractive index data. A hybrid of literature data provides the best results. The transformation also allows the angle of incidence of an ATR crystal to be determined. This opens the way to using both spectral shape and spectra intensity for protein structure fitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Calcium-binding site in AA10 LPMO from Vibrio cholerae suggests modulating effects during environmental survival and infection. An integrated approach using proximity labelling and chemical crosslinking to probe in situ host-virus protein-protein interactions. The big chill: Growth of in situ structural biology with cryo-electron tomography. Handheld portable device for delivering capped silver nanoparticles for antimicrobial applications. The potential of fluorogenicity for single molecule FRET and DyeCycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1