p110α在m - g1过渡期的活性对细胞增殖和重新进入细胞周期至关重要。

Onur Çizmecioğlu
{"title":"p110α在m - g1过渡期的活性对细胞增殖和重新进入细胞周期至关重要。","authors":"Onur Çizmecioğlu","doi":"10.55730/1300-0152.2609","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoinositide 3-kinase (PI3K) signaling pathway is essential for normal physiology and is impaired in diseases such as premalignant hyperproliferative disorders, primary immunodeficiency, metabolic disorders, and cancer. Although the core PI3K pathway components are known today, a long-standing gap in our knowledge of PI3K signaling concerns how distinct PI3K isoforms and their activity patterns contribute to the functional consequences of pathway upregulation. In order to address this issue, we devised a molecular genetic cell model, which allowed temporal regulation of the indispensable PI3K isoform, p110α in distinct stages of the cell cycle. We found that late M and early G1 presence of p110α is key for proper cell cycle progression, whereas its S-phase abundance was redundant. Our results also emphasize a critical dependence of cell cycle reentry on early G1 activity of p110α. Collectively, our findings provide a temporal perspective to p110α activation and offer insight into which wave of PI3K activity could be essential for cell cycle progression.</p>","PeriodicalId":23375,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"46 3","pages":"207-215"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388040/pdf/","citationCount":"1","resultStr":"{\"title\":\"p110α activity at the M-to-G1 transition is critical for cellular proliferation and reentry into the cell cycle.\",\"authors\":\"Onur Çizmecioğlu\",\"doi\":\"10.55730/1300-0152.2609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphoinositide 3-kinase (PI3K) signaling pathway is essential for normal physiology and is impaired in diseases such as premalignant hyperproliferative disorders, primary immunodeficiency, metabolic disorders, and cancer. Although the core PI3K pathway components are known today, a long-standing gap in our knowledge of PI3K signaling concerns how distinct PI3K isoforms and their activity patterns contribute to the functional consequences of pathway upregulation. In order to address this issue, we devised a molecular genetic cell model, which allowed temporal regulation of the indispensable PI3K isoform, p110α in distinct stages of the cell cycle. We found that late M and early G1 presence of p110α is key for proper cell cycle progression, whereas its S-phase abundance was redundant. Our results also emphasize a critical dependence of cell cycle reentry on early G1 activity of p110α. Collectively, our findings provide a temporal perspective to p110α activation and offer insight into which wave of PI3K activity could be essential for cell cycle progression.</p>\",\"PeriodicalId\":23375,\"journal\":{\"name\":\"Turkish journal of biology = Turk biyoloji dergisi\",\"volume\":\"46 3\",\"pages\":\"207-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388040/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish journal of biology = Turk biyoloji dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0152.2609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

磷酸肌肽3-激酶(PI3K)信号通路对正常生理至关重要,在恶性前增生性疾病、原发性免疫缺陷、代谢性疾病和癌症等疾病中受损。虽然核心的PI3K通路成分今天是已知的,但我们对PI3K信号传导的认识长期存在空白,即不同的PI3K异构体及其活性模式如何促进通路上调的功能后果。为了解决这个问题,我们设计了一个分子遗传细胞模型,该模型允许在细胞周期的不同阶段对必不可少的PI3K亚型p110α进行时间调控。我们发现M晚期和G1早期p110α的存在是细胞周期正常进展的关键,而其s期丰度是多余的。我们的研究结果还强调了细胞周期再进入对p110α早期G1活性的关键依赖。总的来说,我们的研究结果提供了p110α激活的时间视角,并提供了PI3K活性的哪一波可能对细胞周期进程至关重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
p110α activity at the M-to-G1 transition is critical for cellular proliferation and reentry into the cell cycle.

Phosphoinositide 3-kinase (PI3K) signaling pathway is essential for normal physiology and is impaired in diseases such as premalignant hyperproliferative disorders, primary immunodeficiency, metabolic disorders, and cancer. Although the core PI3K pathway components are known today, a long-standing gap in our knowledge of PI3K signaling concerns how distinct PI3K isoforms and their activity patterns contribute to the functional consequences of pathway upregulation. In order to address this issue, we devised a molecular genetic cell model, which allowed temporal regulation of the indispensable PI3K isoform, p110α in distinct stages of the cell cycle. We found that late M and early G1 presence of p110α is key for proper cell cycle progression, whereas its S-phase abundance was redundant. Our results also emphasize a critical dependence of cell cycle reentry on early G1 activity of p110α. Collectively, our findings provide a temporal perspective to p110α activation and offer insight into which wave of PI3K activity could be essential for cell cycle progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vitamin D receptor mediates liver ischemia and reperfusion injury by autophagy-regulated M2 macrophage polarization. Functional enhancement of acute infracted heart by coinjection of autologous adipose-derived stem cells with matrigel. tsRNA-15797-modified BMSC-derived exosomes mediate LFNG to induce angiogenesis in osteonecrosis of the femoral head. LINC00460 mediates HMGA2 expression through binding to miRNA-143-5p competitively in gastric carcinoma. Emerging applications of 3D engineered constructs from plant seed extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1