{"title":"转运体作为一种经皮给药系统:皮肤动力学和最新进展。","authors":"Namrata Matharoo, Hana Mohd, Bozena Michniak-Kohn","doi":"10.1002/wnan.1918","DOIUrl":null,"url":null,"abstract":"<p><p>The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1918"},"PeriodicalIF":6.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.\",\"authors\":\"Namrata Matharoo, Hana Mohd, Bozena Michniak-Kohn\",\"doi\":\"10.1002/wnan.1918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\" \",\"pages\":\"e1918\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1918\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1918","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.