通过可扩展的计算基础设施实现高性能神经种群动力学建模。

Aashish N Patel, Andrew R Sedler, Jingya Huang, Chethan Pandarinath, Vikash Gilja
{"title":"通过可扩展的计算基础设施实现高性能神经种群动力学建模。","authors":"Aashish N Patel, Andrew R Sedler, Jingya Huang, Chethan Pandarinath, Vikash Gilja","doi":"10.21105/joss.05023","DOIUrl":null,"url":null,"abstract":"Advances in neural interface technology are facilitating parallel, high-dimensional time series measurements of the brain in action. A powerful strategy for analyzing these measurements is to apply unsupervised learning techniques to uncover lower-dimensional latent dynamics that explain much of the variance in the high-dimensional measurements (Cunningham & Yu, 2014; Golub et al., 2018; Vyas et al., 2020). Latent factor analysis via dynamical systems (LFADS) (Pandarinath et al., 2018) provides a deep learning approach for extracting estimates of these latent dynamics from neural population data. The recently developed AutoLFADS framework (Keshtkaran et al., 2022) extends LFADS by using Population Based Training (PBT) (Jaderberg et al., 2017) to effectively and scalably tune model hyperparameters, a critical step for accurate modeling of neural population data. As hyperparameter sweeps are one of the most computationally demanding processes in model development, these workflows should be deployed in a computationally efficient and cost effective manner given the compute resources available (e.g., local, institutionally-supported, or commercial computing clusters). The initial implementation of AutoLFADS used the Ray library (Moritz et al., 2018) to enable support for specific local and commercial cloud workflows. We extend this support, by providing additional options for training AutoLFADS models using local clusters in a container-native approach (e.g., Docker,","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374446/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-performance neural population dynamics modeling enabled by scalable computational infrastructure.\",\"authors\":\"Aashish N Patel, Andrew R Sedler, Jingya Huang, Chethan Pandarinath, Vikash Gilja\",\"doi\":\"10.21105/joss.05023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in neural interface technology are facilitating parallel, high-dimensional time series measurements of the brain in action. A powerful strategy for analyzing these measurements is to apply unsupervised learning techniques to uncover lower-dimensional latent dynamics that explain much of the variance in the high-dimensional measurements (Cunningham & Yu, 2014; Golub et al., 2018; Vyas et al., 2020). Latent factor analysis via dynamical systems (LFADS) (Pandarinath et al., 2018) provides a deep learning approach for extracting estimates of these latent dynamics from neural population data. The recently developed AutoLFADS framework (Keshtkaran et al., 2022) extends LFADS by using Population Based Training (PBT) (Jaderberg et al., 2017) to effectively and scalably tune model hyperparameters, a critical step for accurate modeling of neural population data. As hyperparameter sweeps are one of the most computationally demanding processes in model development, these workflows should be deployed in a computationally efficient and cost effective manner given the compute resources available (e.g., local, institutionally-supported, or commercial computing clusters). The initial implementation of AutoLFADS used the Ray library (Moritz et al., 2018) to enable support for specific local and commercial cloud workflows. We extend this support, by providing additional options for training AutoLFADS models using local clusters in a container-native approach (e.g., Docker,\",\"PeriodicalId\":16635,\"journal\":{\"name\":\"Journal of open source software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of open source software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/joss.05023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.05023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-performance neural population dynamics modeling enabled by scalable computational infrastructure.
Advances in neural interface technology are facilitating parallel, high-dimensional time series measurements of the brain in action. A powerful strategy for analyzing these measurements is to apply unsupervised learning techniques to uncover lower-dimensional latent dynamics that explain much of the variance in the high-dimensional measurements (Cunningham & Yu, 2014; Golub et al., 2018; Vyas et al., 2020). Latent factor analysis via dynamical systems (LFADS) (Pandarinath et al., 2018) provides a deep learning approach for extracting estimates of these latent dynamics from neural population data. The recently developed AutoLFADS framework (Keshtkaran et al., 2022) extends LFADS by using Population Based Training (PBT) (Jaderberg et al., 2017) to effectively and scalably tune model hyperparameters, a critical step for accurate modeling of neural population data. As hyperparameter sweeps are one of the most computationally demanding processes in model development, these workflows should be deployed in a computationally efficient and cost effective manner given the compute resources available (e.g., local, institutionally-supported, or commercial computing clusters). The initial implementation of AutoLFADS used the Ray library (Moritz et al., 2018) to enable support for specific local and commercial cloud workflows. We extend this support, by providing additional options for training AutoLFADS models using local clusters in a container-native approach (e.g., Docker,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MousebreedeR: A novel software to assist in the design of breeding schema for complex genotypes of experimental organisms OpenTerrace: A fast, flexible and extendable Python framework for thermal energy storage packed bed simulations TrackSegNet: a tool for trajectory segmentation into diffusive states using supervised deep learning omni-fig: Unleashing Project Configuration and Organization in Python PowerAPI: A Python framework for building software-defined power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1