{"title":"EHMT2通过调节HMOX1影响小胶质细胞极化,加重神经元损伤和炎症反应。","authors":"Huaitao Yang, Zhifang Chen, Wenhong Gao","doi":"10.1515/tnsci-2022-0276","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This research was designed to ascertain the function of euchromatic histone lysine methyltransferase 2 (EHMT2) in ischemic stroke-induced neuronal damage and inflammatory response and its regulatory mechanism.</p><p><strong>Methods: </strong>Mouse microglia (BV-2 cells) were induced by oxygen glucose deprivation/reoxygenation (OGD/R) to establish a cellular model, and then co-cultured with HT22 hippocampal neurons. After that, HT22 cell viability and apoptosis were evaluated, followed by the measurement of apoptosis-related factors (B-cell lymphoma-2, Bcl-2 associated X, and cleaved-Caspase 3). Meanwhile, the expression of inducible nitric oxide synthase (M1 microglia polarization marker) and arginase 1 (M2 microglia polarization marker) in BV-2 cells was detected, as well as the levels of inflammatory factors (tumor necrosis factor-α, interleukin [IL]-6, IL-10, IL-1β, and IL-4). Additionally, the expression of EHMT2 and heme oxygenase 1 (HMOX1) in BV-2 cells was assessed by quantitative reverse transcription polymerase chain reaction and western blot, and the binding between EHMT2 and HMOX1 was predicted and verified.</p><p><strong>Results: </strong>OGD/R treatment led to decreased cell viability and increased cell apoptosis in HT22 cells, and aggravated inflammatory response in BV-2 cells. In OGD/R-induced BV-2 cells, EHMT2 and HMOX1 were increasingly expressed, and knockdown of EHMT2 or HMOX1 in BV-2 cells could inhibit neuronal damage and inflammatory response. Moreover, EHMT2 promoted HMOX1 transcription level by histone methylation.</p><p><strong>Conclusion: </strong>Collected evidence showed that down-regulation of EHMT2 relieved neuronal damage and inflammatory response by inhibiting HMOX1 expression.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220276"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388136/pdf/","citationCount":"0","resultStr":"{\"title\":\"EHMT2 affects microglia polarization and aggravates neuronal damage and inflammatory response via regulating HMOX1.\",\"authors\":\"Huaitao Yang, Zhifang Chen, Wenhong Gao\",\"doi\":\"10.1515/tnsci-2022-0276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This research was designed to ascertain the function of euchromatic histone lysine methyltransferase 2 (EHMT2) in ischemic stroke-induced neuronal damage and inflammatory response and its regulatory mechanism.</p><p><strong>Methods: </strong>Mouse microglia (BV-2 cells) were induced by oxygen glucose deprivation/reoxygenation (OGD/R) to establish a cellular model, and then co-cultured with HT22 hippocampal neurons. After that, HT22 cell viability and apoptosis were evaluated, followed by the measurement of apoptosis-related factors (B-cell lymphoma-2, Bcl-2 associated X, and cleaved-Caspase 3). Meanwhile, the expression of inducible nitric oxide synthase (M1 microglia polarization marker) and arginase 1 (M2 microglia polarization marker) in BV-2 cells was detected, as well as the levels of inflammatory factors (tumor necrosis factor-α, interleukin [IL]-6, IL-10, IL-1β, and IL-4). Additionally, the expression of EHMT2 and heme oxygenase 1 (HMOX1) in BV-2 cells was assessed by quantitative reverse transcription polymerase chain reaction and western blot, and the binding between EHMT2 and HMOX1 was predicted and verified.</p><p><strong>Results: </strong>OGD/R treatment led to decreased cell viability and increased cell apoptosis in HT22 cells, and aggravated inflammatory response in BV-2 cells. In OGD/R-induced BV-2 cells, EHMT2 and HMOX1 were increasingly expressed, and knockdown of EHMT2 or HMOX1 in BV-2 cells could inhibit neuronal damage and inflammatory response. Moreover, EHMT2 promoted HMOX1 transcription level by histone methylation.</p><p><strong>Conclusion: </strong>Collected evidence showed that down-regulation of EHMT2 relieved neuronal damage and inflammatory response by inhibiting HMOX1 expression.</p>\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":\"14 1\",\"pages\":\"20220276\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388136/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0276\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
EHMT2 affects microglia polarization and aggravates neuronal damage and inflammatory response via regulating HMOX1.
Objective: This research was designed to ascertain the function of euchromatic histone lysine methyltransferase 2 (EHMT2) in ischemic stroke-induced neuronal damage and inflammatory response and its regulatory mechanism.
Methods: Mouse microglia (BV-2 cells) were induced by oxygen glucose deprivation/reoxygenation (OGD/R) to establish a cellular model, and then co-cultured with HT22 hippocampal neurons. After that, HT22 cell viability and apoptosis were evaluated, followed by the measurement of apoptosis-related factors (B-cell lymphoma-2, Bcl-2 associated X, and cleaved-Caspase 3). Meanwhile, the expression of inducible nitric oxide synthase (M1 microglia polarization marker) and arginase 1 (M2 microglia polarization marker) in BV-2 cells was detected, as well as the levels of inflammatory factors (tumor necrosis factor-α, interleukin [IL]-6, IL-10, IL-1β, and IL-4). Additionally, the expression of EHMT2 and heme oxygenase 1 (HMOX1) in BV-2 cells was assessed by quantitative reverse transcription polymerase chain reaction and western blot, and the binding between EHMT2 and HMOX1 was predicted and verified.
Results: OGD/R treatment led to decreased cell viability and increased cell apoptosis in HT22 cells, and aggravated inflammatory response in BV-2 cells. In OGD/R-induced BV-2 cells, EHMT2 and HMOX1 were increasingly expressed, and knockdown of EHMT2 or HMOX1 in BV-2 cells could inhibit neuronal damage and inflammatory response. Moreover, EHMT2 promoted HMOX1 transcription level by histone methylation.
Conclusion: Collected evidence showed that down-regulation of EHMT2 relieved neuronal damage and inflammatory response by inhibiting HMOX1 expression.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.