最佳动态处理规则超级学习者:考虑因素、性能以及在刑事司法干预中的应用。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-06-16 eCollection Date: 2023-05-01 DOI:10.1515/ijb-2020-0127
Lina M Montoya, Mark J van der Laan, Alexander R Luedtke, Jennifer L Skeem, Jeremy R Coyle, Maya L Petersen
{"title":"最佳动态处理规则超级学习者:考虑因素、性能以及在刑事司法干预中的应用。","authors":"Lina M Montoya, Mark J van der Laan, Alexander R Luedtke, Jennifer L Skeem, Jeremy R Coyle, Maya L Petersen","doi":"10.1515/ijb-2020-0127","DOIUrl":null,"url":null,"abstract":"<p><p>The optimal dynamic treatment rule (ODTR) framework offers an approach for understanding which kinds of patients respond best to specific treatments - in other words, treatment effect heterogeneity. Recently, there has been a proliferation of methods for estimating the ODTR. One such method is an extension of the SuperLearner algorithm - an ensemble method to optimally combine candidate algorithms extensively used in prediction problems - to ODTRs. Following the ``causal roadmap,\" we causally and statistically define the ODTR and provide an introduction to estimating it using the ODTR SuperLearner. Additionally, we highlight practical choices when implementing the algorithm, including choice of candidate algorithms, metalearners to combine the candidates, and risk functions to select the best combination of algorithms. Using simulations, we illustrate how estimating the ODTR using this SuperLearner approach can uncover treatment effect heterogeneity more effectively than traditional approaches based on fitting a parametric regression of the outcome on the treatment, covariates and treatment-covariate interactions. We investigate the implications of choices in implementing an ODTR SuperLearner at various sample sizes. Our results show the advantages of: (1) including a combination of both flexible machine learning algorithms and simple parametric estimators in the library of candidate algorithms; (2) using an ensemble metalearner to combine candidates rather than selecting only the best-performing candidate; (3) using the mean outcome under the rule as a risk function. Finally, we apply the ODTR SuperLearner to the ``Interventions\" study, an ongoing randomized controlled trial, to identify which justice-involved adults with mental illness benefit most from cognitive behavioral therapy to reduce criminal re-offending.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238854/pdf/ijb-19-1-ijb-2020-0127.pdf","citationCount":"0","resultStr":"{\"title\":\"The optimal dynamic treatment rule superlearner: considerations, performance, and application to criminal justice interventions.\",\"authors\":\"Lina M Montoya, Mark J van der Laan, Alexander R Luedtke, Jennifer L Skeem, Jeremy R Coyle, Maya L Petersen\",\"doi\":\"10.1515/ijb-2020-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The optimal dynamic treatment rule (ODTR) framework offers an approach for understanding which kinds of patients respond best to specific treatments - in other words, treatment effect heterogeneity. Recently, there has been a proliferation of methods for estimating the ODTR. One such method is an extension of the SuperLearner algorithm - an ensemble method to optimally combine candidate algorithms extensively used in prediction problems - to ODTRs. Following the ``causal roadmap,\\\" we causally and statistically define the ODTR and provide an introduction to estimating it using the ODTR SuperLearner. Additionally, we highlight practical choices when implementing the algorithm, including choice of candidate algorithms, metalearners to combine the candidates, and risk functions to select the best combination of algorithms. Using simulations, we illustrate how estimating the ODTR using this SuperLearner approach can uncover treatment effect heterogeneity more effectively than traditional approaches based on fitting a parametric regression of the outcome on the treatment, covariates and treatment-covariate interactions. We investigate the implications of choices in implementing an ODTR SuperLearner at various sample sizes. Our results show the advantages of: (1) including a combination of both flexible machine learning algorithms and simple parametric estimators in the library of candidate algorithms; (2) using an ensemble metalearner to combine candidates rather than selecting only the best-performing candidate; (3) using the mean outcome under the rule as a risk function. Finally, we apply the ODTR SuperLearner to the ``Interventions\\\" study, an ongoing randomized controlled trial, to identify which justice-involved adults with mental illness benefit most from cognitive behavioral therapy to reduce criminal re-offending.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238854/pdf/ijb-19-1-ijb-2020-0127.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0127\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0127","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最佳动态治疗规则(ODTR)框架提供了一种了解哪类患者对特定治疗反应最佳的方法--换句话说,就是治疗效果异质性。最近,估计 ODTR 的方法层出不穷。其中一种方法是将超级学习者算法(一种优化组合候选算法的集合方法,广泛应用于预测问题)扩展到 ODTR。按照 "因果路线图",我们从因果和统计角度定义了 ODTR,并介绍了如何使用 ODTR 超级学习器估算 ODTR。此外,我们还强调了实施算法时的实际选择,包括候选算法的选择、组合候选算法的金属学习器以及选择最佳算法组合的风险函数。通过模拟,我们说明了使用这种超级学习器方法估计 ODTR 如何比传统方法更有效地揭示治疗效果的异质性,传统方法的基础是拟合结果对治疗、协变量和治疗-协变量交互作用的参数回归。我们研究了在不同样本量下选择实施 ODTR 超级学习器的影响。我们的结果显示了以下两种方法的优势(1) 在候选算法库中同时包含灵活的机器学习算法和简单的参数估计器;(2) 使用集合金属学习器来组合候选算法,而不是只选择表现最好的候选算法;(3) 使用规则下的平均结果作为风险函数。最后,我们将 ODTR 超级学习器应用于 "干预 "研究(一项正在进行的随机对照试验),以确定哪些患有精神疾病的成年司法人员从认知行为疗法中获益最多,从而减少再次犯罪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The optimal dynamic treatment rule superlearner: considerations, performance, and application to criminal justice interventions.

The optimal dynamic treatment rule (ODTR) framework offers an approach for understanding which kinds of patients respond best to specific treatments - in other words, treatment effect heterogeneity. Recently, there has been a proliferation of methods for estimating the ODTR. One such method is an extension of the SuperLearner algorithm - an ensemble method to optimally combine candidate algorithms extensively used in prediction problems - to ODTRs. Following the ``causal roadmap," we causally and statistically define the ODTR and provide an introduction to estimating it using the ODTR SuperLearner. Additionally, we highlight practical choices when implementing the algorithm, including choice of candidate algorithms, metalearners to combine the candidates, and risk functions to select the best combination of algorithms. Using simulations, we illustrate how estimating the ODTR using this SuperLearner approach can uncover treatment effect heterogeneity more effectively than traditional approaches based on fitting a parametric regression of the outcome on the treatment, covariates and treatment-covariate interactions. We investigate the implications of choices in implementing an ODTR SuperLearner at various sample sizes. Our results show the advantages of: (1) including a combination of both flexible machine learning algorithms and simple parametric estimators in the library of candidate algorithms; (2) using an ensemble metalearner to combine candidates rather than selecting only the best-performing candidate; (3) using the mean outcome under the rule as a risk function. Finally, we apply the ODTR SuperLearner to the ``Interventions" study, an ongoing randomized controlled trial, to identify which justice-involved adults with mental illness benefit most from cognitive behavioral therapy to reduce criminal re-offending.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1