{"title":"6号染色体上的β1,3-半乳糖基转移酶对水稻N-聚糖上Lewis a结构的形成至关重要。","authors":"Jae-Wan Jung, Seong-Ryong Kim","doi":"10.1007/s11248-023-00360-y","DOIUrl":null,"url":null,"abstract":"<p><p>β1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis <sup>a</sup> structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of β1,3-galactose and α1,4-fucose by individual β1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis <sup>a</sup> antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing β1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis <sup>a</sup> epitope formation.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"487-496"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β1,3-galactosyltransferase on chromosome 6 is essential for the formation of Lewis <sup>a</sup> structure on N-glycan in Oryza sativa.\",\"authors\":\"Jae-Wan Jung, Seong-Ryong Kim\",\"doi\":\"10.1007/s11248-023-00360-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis <sup>a</sup> structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of β1,3-galactose and α1,4-fucose by individual β1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis <sup>a</sup> antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing β1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis <sup>a</sup> epitope formation.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\" \",\"pages\":\"487-496\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-023-00360-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-023-00360-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
β1,3-galactosyltransferase on chromosome 6 is essential for the formation of Lewis a structure on N-glycan in Oryza sativa.
β1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis a structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of β1,3-galactose and α1,4-fucose by individual β1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis a antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing β1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis a epitope formation.
期刊介绍:
Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities.
Transgenic Research publishes
-Original Papers
-Reviews:
Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged.
-Brief Communications:
Should report significant developments in methodology and experimental transgenic higher organisms