含有重复序列的蛋白质和系统的计算鉴定。

Q3 Biochemistry, Genetics and Molecular Biology QRB Discovery Pub Date : 2020-01-01 DOI:10.1017/qrd.2020.14
Han Altae-Tran, Linyi Gao, Jonathan Strecker, Rhiannon K Macrae, Feng Zhang
{"title":"含有重复序列的蛋白质和系统的计算鉴定。","authors":"Han Altae-Tran,&nbsp;Linyi Gao,&nbsp;Jonathan Strecker,&nbsp;Rhiannon K Macrae,&nbsp;Feng Zhang","doi":"10.1017/qrd.2020.14","DOIUrl":null,"url":null,"abstract":"<p><p>Repetitive sequence elements in proteins and nucleic acids are often signatures of adaptive or reprogrammable systems in nature. Known examples of these systems, such as transcriptional activator-like effectors (TALE) and CRISPR, have been harnessed as powerful molecular tools with a wide range of applications including genome editing. The continued expansion of genomic sequence databases raises the possibility of prospectively identifying new such systems by computational mining. By leveraging sequence repeats as an organizing principle, here we develop a systematic genome mining approach to explore new types of naturally adaptive systems, five of which are discussed in greater detail. These results highlight the existence of a diverse range of intriguing systems in nature that remain to be explored and also provide a framework for future discovery efforts.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"1 ","pages":"e10"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/qrd.2020.14","citationCount":"1","resultStr":"{\"title\":\"Computational Identification of Repeat-Containing Proteins and Systems.\",\"authors\":\"Han Altae-Tran,&nbsp;Linyi Gao,&nbsp;Jonathan Strecker,&nbsp;Rhiannon K Macrae,&nbsp;Feng Zhang\",\"doi\":\"10.1017/qrd.2020.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repetitive sequence elements in proteins and nucleic acids are often signatures of adaptive or reprogrammable systems in nature. Known examples of these systems, such as transcriptional activator-like effectors (TALE) and CRISPR, have been harnessed as powerful molecular tools with a wide range of applications including genome editing. The continued expansion of genomic sequence databases raises the possibility of prospectively identifying new such systems by computational mining. By leveraging sequence repeats as an organizing principle, here we develop a systematic genome mining approach to explore new types of naturally adaptive systems, five of which are discussed in greater detail. These results highlight the existence of a diverse range of intriguing systems in nature that remain to be explored and also provide a framework for future discovery efforts.</p>\",\"PeriodicalId\":34636,\"journal\":{\"name\":\"QRB Discovery\",\"volume\":\"1 \",\"pages\":\"e10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/qrd.2020.14\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QRB Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qrd.2020.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2020.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

蛋白质和核酸中的重复序列元素通常是自然界中自适应或可重新编程系统的特征。这些系统的已知例子,如转录激活物样效应物(TALE)和CRISPR,已被利用为强大的分子工具,具有广泛的应用,包括基因组编辑。基因组序列数据库的持续扩展提高了通过计算挖掘来识别新系统的可能性。通过利用序列重复作为组织原则,我们开发了一种系统的基因组挖掘方法来探索新型的自然适应系统,其中五种进行了更详细的讨论。这些结果突出了自然界中存在的各种有趣的系统,这些系统仍有待探索,也为未来的发现工作提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Identification of Repeat-Containing Proteins and Systems.

Repetitive sequence elements in proteins and nucleic acids are often signatures of adaptive or reprogrammable systems in nature. Known examples of these systems, such as transcriptional activator-like effectors (TALE) and CRISPR, have been harnessed as powerful molecular tools with a wide range of applications including genome editing. The continued expansion of genomic sequence databases raises the possibility of prospectively identifying new such systems by computational mining. By leveraging sequence repeats as an organizing principle, here we develop a systematic genome mining approach to explore new types of naturally adaptive systems, five of which are discussed in greater detail. These results highlight the existence of a diverse range of intriguing systems in nature that remain to be explored and also provide a framework for future discovery efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Calcium-binding site in AA10 LPMO from Vibrio cholerae suggests modulating effects during environmental survival and infection. An integrated approach using proximity labelling and chemical crosslinking to probe in situ host-virus protein-protein interactions. The big chill: Growth of in situ structural biology with cryo-electron tomography. Handheld portable device for delivering capped silver nanoparticles for antimicrobial applications. The potential of fluorogenicity for single molecule FRET and DyeCycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1