{"title":"神经系统疾病与生殖内分泌功能障碍的联系机制:来自癫痫研究的见解","authors":"Cathryn A. Cutia , Catherine A. Christian-Hinman","doi":"10.1016/j.yfrne.2023.101084","DOIUrl":null,"url":null,"abstract":"<div><p>Gonadal hormone actions in the brain can both worsen and alleviate symptoms of neurological disorders. Although neurological conditions and reproductive endocrine function are seemingly disparate, compelling evidence indicates that reciprocal interactions exist between certain disorders and hypothalamic-pituitary–gonadal (HPG) axis irregularities. Epilepsy is a neurological disorder that shows significant reproductive endocrine dysfunction (RED) in clinical populations. Seizures, particularly those arising from temporal lobe structures, can drive HPG axis alterations, and hormones produced in the HPG axis can reciprocally modulate seizure activity. Despite this relationship, mechanistic links between seizures and RED, and vice versa, are still largely unknown. Here, we review clinical evidence alongside recent investigations in preclinical animal models into the contributions of seizures to HPG axis malfunction, describe the effects of HPG axis hormonal feedback on seizure activity, and discuss how epilepsy research can offer insight into mechanisms linking neurological disorders to HPG axis dysfunction, an understudied area of neuroendocrinology.</p></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"71 ","pages":"Article 101084"},"PeriodicalIF":6.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanisms linking neurological disorders with reproductive endocrine dysfunction: Insights from epilepsy research\",\"authors\":\"Cathryn A. Cutia , Catherine A. Christian-Hinman\",\"doi\":\"10.1016/j.yfrne.2023.101084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gonadal hormone actions in the brain can both worsen and alleviate symptoms of neurological disorders. Although neurological conditions and reproductive endocrine function are seemingly disparate, compelling evidence indicates that reciprocal interactions exist between certain disorders and hypothalamic-pituitary–gonadal (HPG) axis irregularities. Epilepsy is a neurological disorder that shows significant reproductive endocrine dysfunction (RED) in clinical populations. Seizures, particularly those arising from temporal lobe structures, can drive HPG axis alterations, and hormones produced in the HPG axis can reciprocally modulate seizure activity. Despite this relationship, mechanistic links between seizures and RED, and vice versa, are still largely unknown. Here, we review clinical evidence alongside recent investigations in preclinical animal models into the contributions of seizures to HPG axis malfunction, describe the effects of HPG axis hormonal feedback on seizure activity, and discuss how epilepsy research can offer insight into mechanisms linking neurological disorders to HPG axis dysfunction, an understudied area of neuroendocrinology.</p></div>\",\"PeriodicalId\":12469,\"journal\":{\"name\":\"Frontiers in Neuroendocrinology\",\"volume\":\"71 \",\"pages\":\"Article 101084\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091302223000328\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302223000328","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Mechanisms linking neurological disorders with reproductive endocrine dysfunction: Insights from epilepsy research
Gonadal hormone actions in the brain can both worsen and alleviate symptoms of neurological disorders. Although neurological conditions and reproductive endocrine function are seemingly disparate, compelling evidence indicates that reciprocal interactions exist between certain disorders and hypothalamic-pituitary–gonadal (HPG) axis irregularities. Epilepsy is a neurological disorder that shows significant reproductive endocrine dysfunction (RED) in clinical populations. Seizures, particularly those arising from temporal lobe structures, can drive HPG axis alterations, and hormones produced in the HPG axis can reciprocally modulate seizure activity. Despite this relationship, mechanistic links between seizures and RED, and vice versa, are still largely unknown. Here, we review clinical evidence alongside recent investigations in preclinical animal models into the contributions of seizures to HPG axis malfunction, describe the effects of HPG axis hormonal feedback on seizure activity, and discuss how epilepsy research can offer insight into mechanisms linking neurological disorders to HPG axis dysfunction, an understudied area of neuroendocrinology.
期刊介绍:
Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.