Brenna Osborne, Lauren E Wright, Amanda E Brandon, Ella Stuart, Lewin Small, Joris Hoeks, Patrick Schrauwen, David A Sinclair, Magdalene K Montgomery, Gregory J Cooney, Nigel Turner
{"title":"大鼠肌肉中SIRT3的过表达并未改善外周胰岛素抵抗。","authors":"Brenna Osborne, Lauren E Wright, Amanda E Brandon, Ella Stuart, Lewin Small, Joris Hoeks, Patrick Schrauwen, David A Sinclair, Magdalene K Montgomery, Gregory J Cooney, Nigel Turner","doi":"10.1530/JOE-22-0101","DOIUrl":null,"url":null,"abstract":"<p><p>Reduced expression of the NAD+-dependent deacetylase, SIRT3, has been associated with insulin resistance and metabolic dysfunction in humans and rodents. In this study, we investigated whether specific overexpression of SIRT3 in vivo in skeletal muscle could prevent high-fat diet (HFD)-induced muscle insulin resistance. To address this, we used a muscle-specific adeno-associated virus (AAV) to overexpress SIRT3 in rat tibialis and extensor digitorum longus (EDL) muscles. Mitochondrial substrate oxidation, substrate switching and oxidative enzyme activity were assessed in skeletal muscles with and without SIRT3 overexpression. Muscle-specific insulin action was also assessed by hyperinsulinaemic-euglycaemic clamps in rats that underwent a 4-week HFD-feeding protocol. Ex vivo functional assays revealed elevated activity of selected SIRT3-target enzymes including hexokinase, isocitrate dehydrogenase and pyruvate dehydrogenase that was associated with an increase in the ability to switch between fatty acid- and glucose-derived substrates in muscles with SIRT3 overexpression. However, during the clamp, muscles from rats fed an HFD with increased SIRT3 expression displayed equally impaired glucose uptake and insulin-stimulated glycogen synthesis as the contralateral control muscle. Intramuscular triglyceride content was similarly increased in the muscle of high-fat-fed rats, regardless of SIRT3 status. Thus, despite SIRT3 knockout (KO) mouse models indicating many beneficial metabolic roles for SIRT3, our findings show that muscle-specific overexpression of SIRT3 has only minor effects on the acute development of skeletal muscle insulin resistance in high-fat-fed rats.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"258 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT3 overexpression in rat muscle does not ameliorate peripheral insulin resistance.\",\"authors\":\"Brenna Osborne, Lauren E Wright, Amanda E Brandon, Ella Stuart, Lewin Small, Joris Hoeks, Patrick Schrauwen, David A Sinclair, Magdalene K Montgomery, Gregory J Cooney, Nigel Turner\",\"doi\":\"10.1530/JOE-22-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reduced expression of the NAD+-dependent deacetylase, SIRT3, has been associated with insulin resistance and metabolic dysfunction in humans and rodents. In this study, we investigated whether specific overexpression of SIRT3 in vivo in skeletal muscle could prevent high-fat diet (HFD)-induced muscle insulin resistance. To address this, we used a muscle-specific adeno-associated virus (AAV) to overexpress SIRT3 in rat tibialis and extensor digitorum longus (EDL) muscles. Mitochondrial substrate oxidation, substrate switching and oxidative enzyme activity were assessed in skeletal muscles with and without SIRT3 overexpression. Muscle-specific insulin action was also assessed by hyperinsulinaemic-euglycaemic clamps in rats that underwent a 4-week HFD-feeding protocol. Ex vivo functional assays revealed elevated activity of selected SIRT3-target enzymes including hexokinase, isocitrate dehydrogenase and pyruvate dehydrogenase that was associated with an increase in the ability to switch between fatty acid- and glucose-derived substrates in muscles with SIRT3 overexpression. However, during the clamp, muscles from rats fed an HFD with increased SIRT3 expression displayed equally impaired glucose uptake and insulin-stimulated glycogen synthesis as the contralateral control muscle. Intramuscular triglyceride content was similarly increased in the muscle of high-fat-fed rats, regardless of SIRT3 status. Thus, despite SIRT3 knockout (KO) mouse models indicating many beneficial metabolic roles for SIRT3, our findings show that muscle-specific overexpression of SIRT3 has only minor effects on the acute development of skeletal muscle insulin resistance in high-fat-fed rats.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\"258 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-22-0101\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-22-0101","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
SIRT3 overexpression in rat muscle does not ameliorate peripheral insulin resistance.
Reduced expression of the NAD+-dependent deacetylase, SIRT3, has been associated with insulin resistance and metabolic dysfunction in humans and rodents. In this study, we investigated whether specific overexpression of SIRT3 in vivo in skeletal muscle could prevent high-fat diet (HFD)-induced muscle insulin resistance. To address this, we used a muscle-specific adeno-associated virus (AAV) to overexpress SIRT3 in rat tibialis and extensor digitorum longus (EDL) muscles. Mitochondrial substrate oxidation, substrate switching and oxidative enzyme activity were assessed in skeletal muscles with and without SIRT3 overexpression. Muscle-specific insulin action was also assessed by hyperinsulinaemic-euglycaemic clamps in rats that underwent a 4-week HFD-feeding protocol. Ex vivo functional assays revealed elevated activity of selected SIRT3-target enzymes including hexokinase, isocitrate dehydrogenase and pyruvate dehydrogenase that was associated with an increase in the ability to switch between fatty acid- and glucose-derived substrates in muscles with SIRT3 overexpression. However, during the clamp, muscles from rats fed an HFD with increased SIRT3 expression displayed equally impaired glucose uptake and insulin-stimulated glycogen synthesis as the contralateral control muscle. Intramuscular triglyceride content was similarly increased in the muscle of high-fat-fed rats, regardless of SIRT3 status. Thus, despite SIRT3 knockout (KO) mouse models indicating many beneficial metabolic roles for SIRT3, our findings show that muscle-specific overexpression of SIRT3 has only minor effects on the acute development of skeletal muscle insulin resistance in high-fat-fed rats.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.