{"title":"体细胞质量与游离脂肪质量比和细胞外与细胞内水分比与最大摄氧量有关。","authors":"Yosuke Yamada, Tsukasa Yoshida, Haruka Murakami, Yuko Gando, Ryoko Kawakami, Harumi Ohno, Kumpei Tanisawa, Kana Konishi, Julien Tripette, Emi Kondo, Takashi Nakagata, Hinako Nanri, Motohiko Miyachi","doi":"10.1093/gerona/glad140","DOIUrl":null,"url":null,"abstract":"<p><p>Fat-free mass (FFM) is a heterogeneous compartment comprising body cell mass (BCM), intracellular water (ICW), extracellular solids, and extracellular water (ECW). The BCM/FFM and ECW/ICW ratios vary among individuals and decrease with age. This study aimed to determine whether BCM/FFM and ECW/ICW ratios are predictors of maximal oxygen uptake (V̇̇O2peak) independently of age, sex, and objectively measured physical activity (PA). A total of 115 Japanese males and females, aged 55.3 ± 8.0 years (mean ± standard deviation), were included in the study. Anthropometry, explosive leg muscle power, and V̇̇O2peak were measured, and BCM, FFM, ICW, and ECW were estimated. Step count and PA were objectively measured using a triaxial accelerometer. Blood flow volume was assessed using ultrasonography. BCM and ICW were negatively correlated with age, whereas FFM and ECW were not significantly correlated with age. FFM, ICW/ECW, BCM/FFM, step counts, moderate and vigorous PA, and leg muscle power were positively correlated with V̇̇O2peak, even after adjusting for age and sex (p < .05). Multiple regression analysis indicated that either BCM/FFM or ECW/ICW, leg power, and objectively measured PA were associated with V̇̇O2peak independent of age, sex, and FFM. Blood flow volume was significantly correlated with ECW (p < .05), but not with BCM. The BCM/FFM and ECW/ICW ratios were significant predictors of V̇̇O2peak, independent of age, sex, FFM, leg power, and objectively measured PA.</p>","PeriodicalId":49953,"journal":{"name":"Journals of Gerontology Series A-Biological Sciences and Medical Sciences","volume":" ","pages":"1778-1784"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Body Cell Mass to Fat-Free Mass Ratio and Extra- to Intracellular Water Ratio Are Related to Maximal Oxygen Uptake.\",\"authors\":\"Yosuke Yamada, Tsukasa Yoshida, Haruka Murakami, Yuko Gando, Ryoko Kawakami, Harumi Ohno, Kumpei Tanisawa, Kana Konishi, Julien Tripette, Emi Kondo, Takashi Nakagata, Hinako Nanri, Motohiko Miyachi\",\"doi\":\"10.1093/gerona/glad140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fat-free mass (FFM) is a heterogeneous compartment comprising body cell mass (BCM), intracellular water (ICW), extracellular solids, and extracellular water (ECW). The BCM/FFM and ECW/ICW ratios vary among individuals and decrease with age. This study aimed to determine whether BCM/FFM and ECW/ICW ratios are predictors of maximal oxygen uptake (V̇̇O2peak) independently of age, sex, and objectively measured physical activity (PA). A total of 115 Japanese males and females, aged 55.3 ± 8.0 years (mean ± standard deviation), were included in the study. Anthropometry, explosive leg muscle power, and V̇̇O2peak were measured, and BCM, FFM, ICW, and ECW were estimated. Step count and PA were objectively measured using a triaxial accelerometer. Blood flow volume was assessed using ultrasonography. BCM and ICW were negatively correlated with age, whereas FFM and ECW were not significantly correlated with age. FFM, ICW/ECW, BCM/FFM, step counts, moderate and vigorous PA, and leg muscle power were positively correlated with V̇̇O2peak, even after adjusting for age and sex (p < .05). Multiple regression analysis indicated that either BCM/FFM or ECW/ICW, leg power, and objectively measured PA were associated with V̇̇O2peak independent of age, sex, and FFM. Blood flow volume was significantly correlated with ECW (p < .05), but not with BCM. The BCM/FFM and ECW/ICW ratios were significant predictors of V̇̇O2peak, independent of age, sex, FFM, leg power, and objectively measured PA.</p>\",\"PeriodicalId\":49953,\"journal\":{\"name\":\"Journals of Gerontology Series A-Biological Sciences and Medical Sciences\",\"volume\":\" \",\"pages\":\"1778-1784\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journals of Gerontology Series A-Biological Sciences and Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/gerona/glad140\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journals of Gerontology Series A-Biological Sciences and Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/gerona/glad140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Body Cell Mass to Fat-Free Mass Ratio and Extra- to Intracellular Water Ratio Are Related to Maximal Oxygen Uptake.
Fat-free mass (FFM) is a heterogeneous compartment comprising body cell mass (BCM), intracellular water (ICW), extracellular solids, and extracellular water (ECW). The BCM/FFM and ECW/ICW ratios vary among individuals and decrease with age. This study aimed to determine whether BCM/FFM and ECW/ICW ratios are predictors of maximal oxygen uptake (V̇̇O2peak) independently of age, sex, and objectively measured physical activity (PA). A total of 115 Japanese males and females, aged 55.3 ± 8.0 years (mean ± standard deviation), were included in the study. Anthropometry, explosive leg muscle power, and V̇̇O2peak were measured, and BCM, FFM, ICW, and ECW were estimated. Step count and PA were objectively measured using a triaxial accelerometer. Blood flow volume was assessed using ultrasonography. BCM and ICW were negatively correlated with age, whereas FFM and ECW were not significantly correlated with age. FFM, ICW/ECW, BCM/FFM, step counts, moderate and vigorous PA, and leg muscle power were positively correlated with V̇̇O2peak, even after adjusting for age and sex (p < .05). Multiple regression analysis indicated that either BCM/FFM or ECW/ICW, leg power, and objectively measured PA were associated with V̇̇O2peak independent of age, sex, and FFM. Blood flow volume was significantly correlated with ECW (p < .05), but not with BCM. The BCM/FFM and ECW/ICW ratios were significant predictors of V̇̇O2peak, independent of age, sex, FFM, leg power, and objectively measured PA.
期刊介绍:
Publishes articles representing the full range of medical sciences pertaining to aging. Appropriate areas include, but are not limited to, basic medical science, clinical epidemiology, clinical research, and health services research for professions such as medicine, dentistry, allied health sciences, and nursing. It publishes articles on research pertinent to human biology and disease.