{"title":"雄性小鼠的新生双侧须修剪会随年龄改变脑神经递质水平,并导致青少年社会行为异常。","authors":"Hiroyasu Murasawa, Hitomi Soumiya, Hiroyuki Kobayashi, Jun Imai, Takahiko Nagase, Hidefumi Fukumitsu","doi":"10.2220/biomedres.44.147","DOIUrl":null,"url":null,"abstract":"<p><p>Tactile perception via whiskers is important in rodent behavior. Whisker trimming during the neonatal period affects mouse behaviors related to both whisker-based tactile cognition and social performance. However, the molecular basis of these phenomena is not completely understood. To solve this issue, we investigated developmental changes in transmitters and metabolites in various brain regions of male mice subjected to bilateral whisker trimming during the neonatal period (10 days after birth [BWT10 mice]). We discovered significantly lower levels of 3-methoxy-4-hydroxyphenyl glycol (MHPG), the major noradrenaline metabolite, in various brain regions of male BWT10 mice at both early/late adolescent stages (at P4W and P8W). However, reduced levels of dopamine (DA) and their metabolites were more significantly identified at P8W in the nuclear origins of monoamine (midbrain and medulla oblongata) and the limbic system (frontal cortex, amygdala, and hippocampus) than at P4W. Furthermore, the onset of social behavior deficits (P6W) was observed later to the impairment of whisker-based tactile cognitive behaviors (P4W). Taken together, these findings suggest that whisker-mediated tactile cognition may contribute toprogressive abnormalities in social behaviors in BWT10 mice accompanied by impaired development of dopaminergic systems.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":"44 4","pages":"147-160"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neonatal bilateral whisker trimming in male mice age-dependently alters brain neurotransmitter levels and causes adolescent onsets of social behavior abnormalities.\",\"authors\":\"Hiroyasu Murasawa, Hitomi Soumiya, Hiroyuki Kobayashi, Jun Imai, Takahiko Nagase, Hidefumi Fukumitsu\",\"doi\":\"10.2220/biomedres.44.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tactile perception via whiskers is important in rodent behavior. Whisker trimming during the neonatal period affects mouse behaviors related to both whisker-based tactile cognition and social performance. However, the molecular basis of these phenomena is not completely understood. To solve this issue, we investigated developmental changes in transmitters and metabolites in various brain regions of male mice subjected to bilateral whisker trimming during the neonatal period (10 days after birth [BWT10 mice]). We discovered significantly lower levels of 3-methoxy-4-hydroxyphenyl glycol (MHPG), the major noradrenaline metabolite, in various brain regions of male BWT10 mice at both early/late adolescent stages (at P4W and P8W). However, reduced levels of dopamine (DA) and their metabolites were more significantly identified at P8W in the nuclear origins of monoamine (midbrain and medulla oblongata) and the limbic system (frontal cortex, amygdala, and hippocampus) than at P4W. Furthermore, the onset of social behavior deficits (P6W) was observed later to the impairment of whisker-based tactile cognitive behaviors (P4W). Taken together, these findings suggest that whisker-mediated tactile cognition may contribute toprogressive abnormalities in social behaviors in BWT10 mice accompanied by impaired development of dopaminergic systems.</p>\",\"PeriodicalId\":9138,\"journal\":{\"name\":\"Biomedical Research-tokyo\",\"volume\":\"44 4\",\"pages\":\"147-160\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research-tokyo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2220/biomedres.44.147\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.44.147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Neonatal bilateral whisker trimming in male mice age-dependently alters brain neurotransmitter levels and causes adolescent onsets of social behavior abnormalities.
Tactile perception via whiskers is important in rodent behavior. Whisker trimming during the neonatal period affects mouse behaviors related to both whisker-based tactile cognition and social performance. However, the molecular basis of these phenomena is not completely understood. To solve this issue, we investigated developmental changes in transmitters and metabolites in various brain regions of male mice subjected to bilateral whisker trimming during the neonatal period (10 days after birth [BWT10 mice]). We discovered significantly lower levels of 3-methoxy-4-hydroxyphenyl glycol (MHPG), the major noradrenaline metabolite, in various brain regions of male BWT10 mice at both early/late adolescent stages (at P4W and P8W). However, reduced levels of dopamine (DA) and their metabolites were more significantly identified at P8W in the nuclear origins of monoamine (midbrain and medulla oblongata) and the limbic system (frontal cortex, amygdala, and hippocampus) than at P4W. Furthermore, the onset of social behavior deficits (P6W) was observed later to the impairment of whisker-based tactile cognitive behaviors (P4W). Taken together, these findings suggest that whisker-mediated tactile cognition may contribute toprogressive abnormalities in social behaviors in BWT10 mice accompanied by impaired development of dopaminergic systems.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..