{"title":"在数字域上进行几何筛选以获得更高的矩。","authors":"Giacomo Micheli, Severin Schraven, Simran Tinani, Violetta Weger","doi":"10.1007/s40993-023-00466-6","DOIUrl":null,"url":null,"abstract":"<p><p>The geometric sieve for densities is a very convenient tool proposed by Poonen and Stoll (and independently by Ekedahl) to compute the density of a given subset of the integers. In this paper we provide an effective criterion to find all higher moments of the density (e.g. the mean, the variance) of a subset of a finite dimensional free module over the ring of algebraic integers of a number field. More precisely, we provide a geometric sieve that allows the computation of all higher moments corresponding to the density, over a general number field <i>K</i>. This work advances the understanding of geometric sieve for density computations in two ways: on one hand, it extends a result of Bright, Browning and Loughran, where they provide the geometric sieve for densities over number fields; on the other hand, it extends the recent result on a geometric sieve for expected values over the integers to both the ring of algebraic integers and to moments higher than the expected value. To show how effective and applicable our method is, we compute the density, mean and variance of Eisenstein polynomials and shifted Eisenstein polynomials over number fields. This extends (and fully covers) results in the literature that were obtained with ad-hoc methods.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397131/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric sieve over number fields for higher moments.\",\"authors\":\"Giacomo Micheli, Severin Schraven, Simran Tinani, Violetta Weger\",\"doi\":\"10.1007/s40993-023-00466-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The geometric sieve for densities is a very convenient tool proposed by Poonen and Stoll (and independently by Ekedahl) to compute the density of a given subset of the integers. In this paper we provide an effective criterion to find all higher moments of the density (e.g. the mean, the variance) of a subset of a finite dimensional free module over the ring of algebraic integers of a number field. More precisely, we provide a geometric sieve that allows the computation of all higher moments corresponding to the density, over a general number field <i>K</i>. This work advances the understanding of geometric sieve for density computations in two ways: on one hand, it extends a result of Bright, Browning and Loughran, where they provide the geometric sieve for densities over number fields; on the other hand, it extends the recent result on a geometric sieve for expected values over the integers to both the ring of algebraic integers and to moments higher than the expected value. To show how effective and applicable our method is, we compute the density, mean and variance of Eisenstein polynomials and shifted Eisenstein polynomials over number fields. This extends (and fully covers) results in the literature that were obtained with ad-hoc methods.</p>\",\"PeriodicalId\":43826,\"journal\":{\"name\":\"Research in Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-023-00466-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00466-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometric sieve over number fields for higher moments.
The geometric sieve for densities is a very convenient tool proposed by Poonen and Stoll (and independently by Ekedahl) to compute the density of a given subset of the integers. In this paper we provide an effective criterion to find all higher moments of the density (e.g. the mean, the variance) of a subset of a finite dimensional free module over the ring of algebraic integers of a number field. More precisely, we provide a geometric sieve that allows the computation of all higher moments corresponding to the density, over a general number field K. This work advances the understanding of geometric sieve for density computations in two ways: on one hand, it extends a result of Bright, Browning and Loughran, where they provide the geometric sieve for densities over number fields; on the other hand, it extends the recent result on a geometric sieve for expected values over the integers to both the ring of algebraic integers and to moments higher than the expected value. To show how effective and applicable our method is, we compute the density, mean and variance of Eisenstein polynomials and shifted Eisenstein polynomials over number fields. This extends (and fully covers) results in the literature that were obtained with ad-hoc methods.
期刊介绍:
Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.