药物与肠道菌群调节剂的相互作用。

IF 3.4 2区 医学 Q2 PHARMACOLOGY & PHARMACY Drug Metabolism Reviews Pub Date : 2023-08-01 DOI:10.1080/03602532.2023.2197178
Dong-Hyun Kim
{"title":"药物与肠道菌群调节剂的相互作用。","authors":"Dong-Hyun Kim","doi":"10.1080/03602532.2023.2197178","DOIUrl":null,"url":null,"abstract":"<p><p>Orally administered drugs undergo four stages of absorption, distribution, metabolism, and excretion in the body. However, before being absorbed into the body, orally administered drugs contact with gut microbiota, which catalyze their metabolic reactions such as reduction, hydroxylation (including deconjugation), dehydrogenation, acetylation, etc. Although these metabolic reactions typically inactivate drugs (ranitidine, digoxin, and amlodipine), some activate them (sulfasalazine). The composition and quantity of gut microbiota are variable across individuals and fluctuated by gut microbiota modulators such as diets, drugs (antibiotics), probiotics, prebiotics, pathogen infections, and stressors. Gut microbiota-involved metabolisms of drugs in the gastrointestinal tract are dependent on the composition and quantity of gut microbiota. Therefore, the bioavailability of orally administered drugs is significantly affected by gut microbiota modulators. This review describes gut microbiota modulator-drug interactions.</p>","PeriodicalId":11307,"journal":{"name":"Drug Metabolism Reviews","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of drugs with gut microbiota modulators.\",\"authors\":\"Dong-Hyun Kim\",\"doi\":\"10.1080/03602532.2023.2197178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orally administered drugs undergo four stages of absorption, distribution, metabolism, and excretion in the body. However, before being absorbed into the body, orally administered drugs contact with gut microbiota, which catalyze their metabolic reactions such as reduction, hydroxylation (including deconjugation), dehydrogenation, acetylation, etc. Although these metabolic reactions typically inactivate drugs (ranitidine, digoxin, and amlodipine), some activate them (sulfasalazine). The composition and quantity of gut microbiota are variable across individuals and fluctuated by gut microbiota modulators such as diets, drugs (antibiotics), probiotics, prebiotics, pathogen infections, and stressors. Gut microbiota-involved metabolisms of drugs in the gastrointestinal tract are dependent on the composition and quantity of gut microbiota. Therefore, the bioavailability of orally administered drugs is significantly affected by gut microbiota modulators. This review describes gut microbiota modulator-drug interactions.</p>\",\"PeriodicalId\":11307,\"journal\":{\"name\":\"Drug Metabolism Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03602532.2023.2197178\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03602532.2023.2197178","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

口服药物在体内经历吸收、分布、代谢和排泄四个阶段。然而,口服药物在被人体吸收之前,与肠道菌群接触,催化其代谢反应,如还原、羟基化(包括去偶联)、脱氢、乙酰化等。虽然这些代谢反应通常会使药物失活(雷尼替丁、地高辛和氨氯地平),但也有一些会使药物激活(柳氮磺胺吡啶)。肠道菌群的组成和数量在个体之间是可变的,并且受肠道菌群调节剂(如饮食、药物(抗生素)、益生菌、益生元、病原体感染和压力源)的影响而波动。肠道菌群参与的药物在胃肠道中的代谢依赖于肠道菌群的组成和数量。因此,口服药物的生物利用度受到肠道微生物群调节剂的显著影响。本文综述了肠道微生物群调节剂与药物的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of drugs with gut microbiota modulators.

Orally administered drugs undergo four stages of absorption, distribution, metabolism, and excretion in the body. However, before being absorbed into the body, orally administered drugs contact with gut microbiota, which catalyze their metabolic reactions such as reduction, hydroxylation (including deconjugation), dehydrogenation, acetylation, etc. Although these metabolic reactions typically inactivate drugs (ranitidine, digoxin, and amlodipine), some activate them (sulfasalazine). The composition and quantity of gut microbiota are variable across individuals and fluctuated by gut microbiota modulators such as diets, drugs (antibiotics), probiotics, prebiotics, pathogen infections, and stressors. Gut microbiota-involved metabolisms of drugs in the gastrointestinal tract are dependent on the composition and quantity of gut microbiota. Therefore, the bioavailability of orally administered drugs is significantly affected by gut microbiota modulators. This review describes gut microbiota modulator-drug interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Metabolism Reviews
Drug Metabolism Reviews 医学-药学
CiteScore
11.10
自引率
1.70%
发文量
21
审稿时长
1 months
期刊介绍: Drug Metabolism Reviews consistently provides critically needed reviews of an impressive array of drug metabolism research-covering established, new, and potential drugs; environmentally toxic chemicals; absorption; metabolism and excretion; and enzymology of all living species. Additionally, the journal offers new hypotheses of interest to diverse groups of medical professionals including pharmacologists, toxicologists, chemists, microbiologists, pharmacokineticists, immunologists, mass spectroscopists, as well as enzymologists working in xenobiotic biotransformation.
期刊最新文献
Metabolism and detection of designer benzodiazepines: a systematic review. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug metabolism and transport mediated the hepatotoxicity of Pleuropterus multiflorus root: a review. Drug transporters in drug disposition - highlights from the year 2023. Insights into pharmacogenetics, drug-gene interactions, and drug-drug-gene interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1