{"title":"基于噪声分数分析和新型聚类算法的脑电图驾驶状态识别。","authors":"Rongrong Fu, Zheyu Li, Shiwei Wang, Dong Xu, Xiaodong Huang, Haifeng Liang","doi":"10.1515/bmt-2022-0395","DOIUrl":null,"url":null,"abstract":"<p><p>Driver states are reported as one of the principal factors in driving safety. Distinguishing the driving driver state based on the artifact-free electroencephalogram (EEG) signal is an effective means, but redundant information and noise will inevitably reduce the signal-to-noise ratio of the EEG signal. This study proposes a method to automatically remove electrooculography (EOG) artifacts by noise fraction analysis. Specifically, multi-channel EEG recordings are collected after the driver experiences a long time driving and after a certain period of rest respectively. Noise fraction analysis is then applied to remove EOG artifacts by separating the multichannel EEG into components by optimizing the signal-to-noise quotient. The representation of data characteristics of the EEG after denoising is found in the Fisher ratio space. Additionally, a novel clustering algorithm is designed to identify denoising EEG by combining cluster ensemble and probability mixture model (CEPM). The EEG mapping plot is used to illustrate the effectiveness and efficiency of noise fraction analysis on the denoising of EEG signals. Adjusted rand index (ARI) and accuracy (ACC) are used to demonstrate clustering performance and precision. The results showed that the noise artifacts in the EEG were removed and the clustering accuracy of all participants was above 90%, resulting in a high driver fatigue recognition rate.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-based driver states discrimination by noise fraction analysis and novel clustering algorithm.\",\"authors\":\"Rongrong Fu, Zheyu Li, Shiwei Wang, Dong Xu, Xiaodong Huang, Haifeng Liang\",\"doi\":\"10.1515/bmt-2022-0395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Driver states are reported as one of the principal factors in driving safety. Distinguishing the driving driver state based on the artifact-free electroencephalogram (EEG) signal is an effective means, but redundant information and noise will inevitably reduce the signal-to-noise ratio of the EEG signal. This study proposes a method to automatically remove electrooculography (EOG) artifacts by noise fraction analysis. Specifically, multi-channel EEG recordings are collected after the driver experiences a long time driving and after a certain period of rest respectively. Noise fraction analysis is then applied to remove EOG artifacts by separating the multichannel EEG into components by optimizing the signal-to-noise quotient. The representation of data characteristics of the EEG after denoising is found in the Fisher ratio space. Additionally, a novel clustering algorithm is designed to identify denoising EEG by combining cluster ensemble and probability mixture model (CEPM). The EEG mapping plot is used to illustrate the effectiveness and efficiency of noise fraction analysis on the denoising of EEG signals. Adjusted rand index (ARI) and accuracy (ACC) are used to demonstrate clustering performance and precision. The results showed that the noise artifacts in the EEG were removed and the clustering accuracy of all participants was above 90%, resulting in a high driver fatigue recognition rate.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0395\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0395","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
EEG-based driver states discrimination by noise fraction analysis and novel clustering algorithm.
Driver states are reported as one of the principal factors in driving safety. Distinguishing the driving driver state based on the artifact-free electroencephalogram (EEG) signal is an effective means, but redundant information and noise will inevitably reduce the signal-to-noise ratio of the EEG signal. This study proposes a method to automatically remove electrooculography (EOG) artifacts by noise fraction analysis. Specifically, multi-channel EEG recordings are collected after the driver experiences a long time driving and after a certain period of rest respectively. Noise fraction analysis is then applied to remove EOG artifacts by separating the multichannel EEG into components by optimizing the signal-to-noise quotient. The representation of data characteristics of the EEG after denoising is found in the Fisher ratio space. Additionally, a novel clustering algorithm is designed to identify denoising EEG by combining cluster ensemble and probability mixture model (CEPM). The EEG mapping plot is used to illustrate the effectiveness and efficiency of noise fraction analysis on the denoising of EEG signals. Adjusted rand index (ARI) and accuracy (ACC) are used to demonstrate clustering performance and precision. The results showed that the noise artifacts in the EEG were removed and the clustering accuracy of all participants was above 90%, resulting in a high driver fatigue recognition rate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.