Wenqian Zhang, Kangkang Zha, Weixian Hu, Yuan Xiong, Samuel Knoedler, Doha Obed, Adriana C Panayi, Ze Lin, Faqi Cao, Bobin Mi, Guohui Liu
{"title":"多功能水凝胶:骨软骨再生的先进治疗工具。","authors":"Wenqian Zhang, Kangkang Zha, Weixian Hu, Yuan Xiong, Samuel Knoedler, Doha Obed, Adriana C Panayi, Ze Lin, Faqi Cao, Bobin Mi, Guohui Liu","doi":"10.1186/s40824-023-00411-9","DOIUrl":null,"url":null,"abstract":"<p><p>Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"76"},"PeriodicalIF":11.3000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration.\",\"authors\":\"Wenqian Zhang, Kangkang Zha, Weixian Hu, Yuan Xiong, Samuel Knoedler, Doha Obed, Adriana C Panayi, Ze Lin, Faqi Cao, Bobin Mi, Guohui Liu\",\"doi\":\"10.1186/s40824-023-00411-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.</p>\",\"PeriodicalId\":9079,\"journal\":{\"name\":\"Biomaterials Research\",\"volume\":\"27 1\",\"pages\":\"76\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40824-023-00411-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00411-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration.
Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.
期刊介绍:
Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.