Akil Khalid, Pragnya P Prusty, Iqra Arshad, Hannah E Gustafson, Isra Jalaly, Keith Nockels, Barry L Bentley, Rahul Goel, Elisa R Ferrè
{"title":"太空晕动病的药物和非药物对策:系统综述。","authors":"Akil Khalid, Pragnya P Prusty, Iqra Arshad, Hannah E Gustafson, Isra Jalaly, Keith Nockels, Barry L Bentley, Rahul Goel, Elisa R Ferrè","doi":"10.3389/fncir.2023.1150233","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Space Motion Sickness (SMS) is a syndrome that affects around 70% of astronauts and includes symptoms of nausea, dizziness, fatigue, vertigo, headaches, vomiting, and cold sweating. Consequences range from discomfort to severe sensorimotor and cognitive incapacitation, which might cause potential problems for mission-critical tasks and astronauts and cosmonauts' well-being. Both pharmacological and non-pharmacological countermeasures have been proposed to mitigate SMS. However, their effectiveness has not been systematically evaluated. Here we present the first systematic review of published peer-reviewed research on the effectiveness of pharmacological and non-pharmacological countermeasures to SMS.</p><p><strong>Methods: </strong>We performed a double-blind title and abstract screening using the online Rayyan collaboration tool for systematic reviews, followed by a full-text screening. Eventually, only 23 peer-reviewed studies underwent data extraction.</p><p><strong>Results: </strong>Both pharmacological and non-pharmacological countermeasures can help mitigate SMS symptoms.</p><p><strong>Discussion: </strong>No definitive recommendation can be given regarding the superiority of any particular countermeasure approach. Importantly, there is considerable heterogeneity in the published research methods, lack of a standardized assessment approach, and small sample sizes. To allow for consistent comparisons between SMS countermeasures in the future, standardized testing protocols for spaceflight and ground-based analogs are needed. We believe that the data should be made openly available, given the uniqueness of the environment in which it is collected.</p><p><strong>Systematic review registration: </strong>https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021244131.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1150233"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311550/pdf/","citationCount":"1","resultStr":"{\"title\":\"Pharmacological and non-pharmacological countermeasures to Space Motion Sickness: a systematic review.\",\"authors\":\"Akil Khalid, Pragnya P Prusty, Iqra Arshad, Hannah E Gustafson, Isra Jalaly, Keith Nockels, Barry L Bentley, Rahul Goel, Elisa R Ferrè\",\"doi\":\"10.3389/fncir.2023.1150233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Space Motion Sickness (SMS) is a syndrome that affects around 70% of astronauts and includes symptoms of nausea, dizziness, fatigue, vertigo, headaches, vomiting, and cold sweating. Consequences range from discomfort to severe sensorimotor and cognitive incapacitation, which might cause potential problems for mission-critical tasks and astronauts and cosmonauts' well-being. Both pharmacological and non-pharmacological countermeasures have been proposed to mitigate SMS. However, their effectiveness has not been systematically evaluated. Here we present the first systematic review of published peer-reviewed research on the effectiveness of pharmacological and non-pharmacological countermeasures to SMS.</p><p><strong>Methods: </strong>We performed a double-blind title and abstract screening using the online Rayyan collaboration tool for systematic reviews, followed by a full-text screening. Eventually, only 23 peer-reviewed studies underwent data extraction.</p><p><strong>Results: </strong>Both pharmacological and non-pharmacological countermeasures can help mitigate SMS symptoms.</p><p><strong>Discussion: </strong>No definitive recommendation can be given regarding the superiority of any particular countermeasure approach. Importantly, there is considerable heterogeneity in the published research methods, lack of a standardized assessment approach, and small sample sizes. To allow for consistent comparisons between SMS countermeasures in the future, standardized testing protocols for spaceflight and ground-based analogs are needed. We believe that the data should be made openly available, given the uniqueness of the environment in which it is collected.</p><p><strong>Systematic review registration: </strong>https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021244131.</p>\",\"PeriodicalId\":12498,\"journal\":{\"name\":\"Frontiers in Neural Circuits\",\"volume\":\"17 \",\"pages\":\"1150233\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311550/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neural Circuits\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncir.2023.1150233\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2023.1150233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Pharmacological and non-pharmacological countermeasures to Space Motion Sickness: a systematic review.
Introduction: Space Motion Sickness (SMS) is a syndrome that affects around 70% of astronauts and includes symptoms of nausea, dizziness, fatigue, vertigo, headaches, vomiting, and cold sweating. Consequences range from discomfort to severe sensorimotor and cognitive incapacitation, which might cause potential problems for mission-critical tasks and astronauts and cosmonauts' well-being. Both pharmacological and non-pharmacological countermeasures have been proposed to mitigate SMS. However, their effectiveness has not been systematically evaluated. Here we present the first systematic review of published peer-reviewed research on the effectiveness of pharmacological and non-pharmacological countermeasures to SMS.
Methods: We performed a double-blind title and abstract screening using the online Rayyan collaboration tool for systematic reviews, followed by a full-text screening. Eventually, only 23 peer-reviewed studies underwent data extraction.
Results: Both pharmacological and non-pharmacological countermeasures can help mitigate SMS symptoms.
Discussion: No definitive recommendation can be given regarding the superiority of any particular countermeasure approach. Importantly, there is considerable heterogeneity in the published research methods, lack of a standardized assessment approach, and small sample sizes. To allow for consistent comparisons between SMS countermeasures in the future, standardized testing protocols for spaceflight and ground-based analogs are needed. We believe that the data should be made openly available, given the uniqueness of the environment in which it is collected.
期刊介绍:
Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.