Aaron W Murnan, Jennifer J Tscholl, Rajesh Ganta, Henry O Duah, Islam Qasem, Emre Sezgin
{"title":"从电子健康记录中识别性贩运儿童幸存者:人工智能指导方法。","authors":"Aaron W Murnan, Jennifer J Tscholl, Rajesh Ganta, Henry O Duah, Islam Qasem, Emre Sezgin","doi":"10.1177/10775595231194599","DOIUrl":null,"url":null,"abstract":"<p><p>Survivors of child sex trafficking (SCST) experience high rates of adverse health outcomes. Amidst the duration of their victimization, survivors regularly seek healthcare yet fail to be identified. This study sought to utilize artificial intelligence (AI) to identify SCST and describe the elements of their healthcare presentation. An AI-supported keyword search was conducted to identify SCST within the electronic medical records (EMR) of ∼1.5 million patients at a large midwestern pediatric hospital. Descriptive analyses were used to evaluate associated diagnoses and clinical presentation. A sex trafficking-related keyword was identified in .18% of patient charts. Among this cohort, the most common associated diagnostic codes were for Confirmed Sexual/Physical Assault; Trauma and Stress-Related Disorders; Depressive Disorders; Anxiety Disorders; and Suicidal Ideation. Our findings are consistent with the myriad of known adverse physical and psychological outcomes among SCST and illuminate the future potential of AI technology to improve screening and research efforts surrounding all aspects of this vulnerable population.</p>","PeriodicalId":48052,"journal":{"name":"Child Maltreatment","volume":" ","pages":"601-611"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Child Survivors of Sex Trafficking From Electronic Health Records: An Artificial Intelligence Guided Approach.\",\"authors\":\"Aaron W Murnan, Jennifer J Tscholl, Rajesh Ganta, Henry O Duah, Islam Qasem, Emre Sezgin\",\"doi\":\"10.1177/10775595231194599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Survivors of child sex trafficking (SCST) experience high rates of adverse health outcomes. Amidst the duration of their victimization, survivors regularly seek healthcare yet fail to be identified. This study sought to utilize artificial intelligence (AI) to identify SCST and describe the elements of their healthcare presentation. An AI-supported keyword search was conducted to identify SCST within the electronic medical records (EMR) of ∼1.5 million patients at a large midwestern pediatric hospital. Descriptive analyses were used to evaluate associated diagnoses and clinical presentation. A sex trafficking-related keyword was identified in .18% of patient charts. Among this cohort, the most common associated diagnostic codes were for Confirmed Sexual/Physical Assault; Trauma and Stress-Related Disorders; Depressive Disorders; Anxiety Disorders; and Suicidal Ideation. Our findings are consistent with the myriad of known adverse physical and psychological outcomes among SCST and illuminate the future potential of AI technology to improve screening and research efforts surrounding all aspects of this vulnerable population.</p>\",\"PeriodicalId\":48052,\"journal\":{\"name\":\"Child Maltreatment\",\"volume\":\" \",\"pages\":\"601-611\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Child Maltreatment\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/10775595231194599\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"FAMILY STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child Maltreatment","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/10775595231194599","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FAMILY STUDIES","Score":null,"Total":0}
Identification of Child Survivors of Sex Trafficking From Electronic Health Records: An Artificial Intelligence Guided Approach.
Survivors of child sex trafficking (SCST) experience high rates of adverse health outcomes. Amidst the duration of their victimization, survivors regularly seek healthcare yet fail to be identified. This study sought to utilize artificial intelligence (AI) to identify SCST and describe the elements of their healthcare presentation. An AI-supported keyword search was conducted to identify SCST within the electronic medical records (EMR) of ∼1.5 million patients at a large midwestern pediatric hospital. Descriptive analyses were used to evaluate associated diagnoses and clinical presentation. A sex trafficking-related keyword was identified in .18% of patient charts. Among this cohort, the most common associated diagnostic codes were for Confirmed Sexual/Physical Assault; Trauma and Stress-Related Disorders; Depressive Disorders; Anxiety Disorders; and Suicidal Ideation. Our findings are consistent with the myriad of known adverse physical and psychological outcomes among SCST and illuminate the future potential of AI technology to improve screening and research efforts surrounding all aspects of this vulnerable population.
期刊介绍:
Child Maltreatment is the official journal of the American Professional Society on the Abuse of Children (APSAC), the nation"s largest interdisciplinary child maltreatment professional organization. Child Maltreatment"s object is to foster professional excellence in the field of child abuse and neglect by reporting current and at-issue scientific information and technical innovations in a form immediately useful to practitioners and researchers from mental health, child protection, law, law enforcement, medicine, nursing, and allied disciplines. Child Maltreatment emphasizes perspectives with a rigorous scientific base that are relevant to policy, practice, and research.