{"title":"DHX38通过调节胰腺导管腺癌中RELL2的前mRNA替代剪接限制化疗抗性","authors":"Zeru Li, Cheng Qin, Bangbo Zhao, Yuanyang Wang, Tianyu Li, Yutong Zhao, Weibin Wang","doi":"10.1371/journal.pgen.1010847","DOIUrl":null,"url":null,"abstract":"<p><p>Intron retention plays an important role in cancer progression and chemotherapy resistance and seems to be essential for the maintenance of genome stability in cancer. Here, our goal was to analyze the role of receptor expressed in lymphoid tissue (Relt)-like 2 (RELL2) intron 4 retention in promoting pancreatic ductal adenocarcinoma (PDAC) progression. Our results showed that intron retention (IR) occurs at the fourth intron of RELL2 transcript in gemcitabine resistant PDAC cells, however, the regulatory mechanism and the clinical implications of IR of RELL2 are unclear. Firstly, we found that RELL2 plays an anti-oncogenic role in PDAC by performing in vitro functional assays including cell proliferation, GEM cytotoxicity assay and apoptosis. Subsequently, we identified the upstream gene of RELL2, DEAH-Box Helicase 38 (DHX38), and demonstrated the direct interaction between DHX38 and RELL2 by RIP-qPCR. We also found that altered expression of DHX38 resulted in corresponding changes in intron 4 retention of RELL2. Importantly, we unveiled that overexpression of DHX38 on the basis of knocking down of the fourth intron of RELL2 resulted in an impaired intron 4 intention. Overall, our study identified a new IR site in PDAC, which could be a possible target for PDAC therapy.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010847"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381071/pdf/","citationCount":"2","resultStr":"{\"title\":\"DHX38 restricts chemoresistance by regulating the alternative pre-mRNA splicing of RELL2 in pancreatic ductal adenocarcinoma.\",\"authors\":\"Zeru Li, Cheng Qin, Bangbo Zhao, Yuanyang Wang, Tianyu Li, Yutong Zhao, Weibin Wang\",\"doi\":\"10.1371/journal.pgen.1010847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intron retention plays an important role in cancer progression and chemotherapy resistance and seems to be essential for the maintenance of genome stability in cancer. Here, our goal was to analyze the role of receptor expressed in lymphoid tissue (Relt)-like 2 (RELL2) intron 4 retention in promoting pancreatic ductal adenocarcinoma (PDAC) progression. Our results showed that intron retention (IR) occurs at the fourth intron of RELL2 transcript in gemcitabine resistant PDAC cells, however, the regulatory mechanism and the clinical implications of IR of RELL2 are unclear. Firstly, we found that RELL2 plays an anti-oncogenic role in PDAC by performing in vitro functional assays including cell proliferation, GEM cytotoxicity assay and apoptosis. Subsequently, we identified the upstream gene of RELL2, DEAH-Box Helicase 38 (DHX38), and demonstrated the direct interaction between DHX38 and RELL2 by RIP-qPCR. We also found that altered expression of DHX38 resulted in corresponding changes in intron 4 retention of RELL2. Importantly, we unveiled that overexpression of DHX38 on the basis of knocking down of the fourth intron of RELL2 resulted in an impaired intron 4 intention. Overall, our study identified a new IR site in PDAC, which could be a possible target for PDAC therapy.</p>\",\"PeriodicalId\":20266,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"19 7\",\"pages\":\"e1010847\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381071/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1010847\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1010847","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
DHX38 restricts chemoresistance by regulating the alternative pre-mRNA splicing of RELL2 in pancreatic ductal adenocarcinoma.
Intron retention plays an important role in cancer progression and chemotherapy resistance and seems to be essential for the maintenance of genome stability in cancer. Here, our goal was to analyze the role of receptor expressed in lymphoid tissue (Relt)-like 2 (RELL2) intron 4 retention in promoting pancreatic ductal adenocarcinoma (PDAC) progression. Our results showed that intron retention (IR) occurs at the fourth intron of RELL2 transcript in gemcitabine resistant PDAC cells, however, the regulatory mechanism and the clinical implications of IR of RELL2 are unclear. Firstly, we found that RELL2 plays an anti-oncogenic role in PDAC by performing in vitro functional assays including cell proliferation, GEM cytotoxicity assay and apoptosis. Subsequently, we identified the upstream gene of RELL2, DEAH-Box Helicase 38 (DHX38), and demonstrated the direct interaction between DHX38 and RELL2 by RIP-qPCR. We also found that altered expression of DHX38 resulted in corresponding changes in intron 4 retention of RELL2. Importantly, we unveiled that overexpression of DHX38 on the basis of knocking down of the fourth intron of RELL2 resulted in an impaired intron 4 intention. Overall, our study identified a new IR site in PDAC, which could be a possible target for PDAC therapy.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.