{"title":"哮喘气道中 TGF-β 激活的动态模型。","authors":"Hannah J Pybus, Reuben D O'Dea, Bindi S Brook","doi":"10.1093/imammb/dqad004","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive activation of the regulatory cytokine transforming growth factor $\\beta $ (TGF-$\\beta $) via contraction of airway smooth muscle (ASM) is associated with the development of asthma. In this study, we develop an ordinary differential equation model that describes the change in density of the key airway wall constituents, ASM and extracellular matrix (ECM), and their interplay with subcellular signalling pathways leading to the activation of TGF-$\\beta $. We identify bistable parameter regimes where there are two positive steady states, corresponding to either reduced or elevated TGF-$\\beta $ concentration, with the latter leading additionally to increased ASM and ECM density. We associate the former with a healthy homeostatic state and the latter with a diseased (asthmatic) state. We demonstrate that external stimuli, inducing TGF-$\\beta $ activation via ASM contraction (mimicking an asthmatic exacerbation), can perturb the system irreversibly from the healthy state to the diseased one. We show that the properties of the stimuli, such as their frequency or strength, and the clearance of surplus active TGF-$\\beta $, are important in determining the long-term dynamics and the development of disease. Finally, we demonstrate the utility of this model in investigating temporal responses to bronchial thermoplasty, a therapeutic intervention in which ASM is ablated by applying thermal energy to the airway wall. The model predicts the parameter-dependent threshold damage required to obtain irreversible reduction in ASM content, suggesting that certain asthma phenotypes are more likely to benefit from this intervention.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":" ","pages":"238-265"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical model of TGF-β activation in asthmatic airways.\",\"authors\":\"Hannah J Pybus, Reuben D O'Dea, Bindi S Brook\",\"doi\":\"10.1093/imammb/dqad004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Excessive activation of the regulatory cytokine transforming growth factor $\\\\beta $ (TGF-$\\\\beta $) via contraction of airway smooth muscle (ASM) is associated with the development of asthma. In this study, we develop an ordinary differential equation model that describes the change in density of the key airway wall constituents, ASM and extracellular matrix (ECM), and their interplay with subcellular signalling pathways leading to the activation of TGF-$\\\\beta $. We identify bistable parameter regimes where there are two positive steady states, corresponding to either reduced or elevated TGF-$\\\\beta $ concentration, with the latter leading additionally to increased ASM and ECM density. We associate the former with a healthy homeostatic state and the latter with a diseased (asthmatic) state. We demonstrate that external stimuli, inducing TGF-$\\\\beta $ activation via ASM contraction (mimicking an asthmatic exacerbation), can perturb the system irreversibly from the healthy state to the diseased one. We show that the properties of the stimuli, such as their frequency or strength, and the clearance of surplus active TGF-$\\\\beta $, are important in determining the long-term dynamics and the development of disease. Finally, we demonstrate the utility of this model in investigating temporal responses to bronchial thermoplasty, a therapeutic intervention in which ASM is ablated by applying thermal energy to the airway wall. The model predicts the parameter-dependent threshold damage required to obtain irreversible reduction in ASM content, suggesting that certain asthma phenotypes are more likely to benefit from this intervention.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":\" \",\"pages\":\"238-265\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqad004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqad004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
A dynamical model of TGF-β activation in asthmatic airways.
Excessive activation of the regulatory cytokine transforming growth factor $\beta $ (TGF-$\beta $) via contraction of airway smooth muscle (ASM) is associated with the development of asthma. In this study, we develop an ordinary differential equation model that describes the change in density of the key airway wall constituents, ASM and extracellular matrix (ECM), and their interplay with subcellular signalling pathways leading to the activation of TGF-$\beta $. We identify bistable parameter regimes where there are two positive steady states, corresponding to either reduced or elevated TGF-$\beta $ concentration, with the latter leading additionally to increased ASM and ECM density. We associate the former with a healthy homeostatic state and the latter with a diseased (asthmatic) state. We demonstrate that external stimuli, inducing TGF-$\beta $ activation via ASM contraction (mimicking an asthmatic exacerbation), can perturb the system irreversibly from the healthy state to the diseased one. We show that the properties of the stimuli, such as their frequency or strength, and the clearance of surplus active TGF-$\beta $, are important in determining the long-term dynamics and the development of disease. Finally, we demonstrate the utility of this model in investigating temporal responses to bronchial thermoplasty, a therapeutic intervention in which ASM is ablated by applying thermal energy to the airway wall. The model predicts the parameter-dependent threshold damage required to obtain irreversible reduction in ASM content, suggesting that certain asthma phenotypes are more likely to benefit from this intervention.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology