{"title":"利用集合改进基数表型的分类。","authors":"Sarah M Alghamdi, Robert Hoehndorf","doi":"10.1186/s13326-023-00290-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Phenotypes are observable characteristics of an organism and they can be highly variable. Information about phenotypes is collected in a clinical context to characterize disease, and is also collected in model organisms and stored in model organism databases where they are used to understand gene functions. Phenotype data is also used in computational data analysis and machine learning methods to provide novel insights into disease mechanisms and support personalized diagnosis of disease. For mammalian organisms and in a clinical context, ontologies such as the Human Phenotype Ontology and the Mammalian Phenotype Ontology are widely used to formally and precisely describe phenotypes. We specifically analyze axioms pertaining to phenotypes of collections of entities within a body, and we find that some of the axioms in phenotype ontologies lead to inferences that may not accurately reflect the underlying biological phenomena.</p><p><strong>Results: </strong>We reformulate the phenotypes of collections of entities using an ontological theory of collections. By reformulating phenotypes of collections in phenotypes ontologies, we avoid potentially incorrect inferences pertaining to the cardinality of these collections. We apply our method to two phenotype ontologies and show that the reformulation not only removes some problematic inferences but also quantitatively improves biological data analysis.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"9"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the classification of cardinality phenotypes using collections.\",\"authors\":\"Sarah M Alghamdi, Robert Hoehndorf\",\"doi\":\"10.1186/s13326-023-00290-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Phenotypes are observable characteristics of an organism and they can be highly variable. Information about phenotypes is collected in a clinical context to characterize disease, and is also collected in model organisms and stored in model organism databases where they are used to understand gene functions. Phenotype data is also used in computational data analysis and machine learning methods to provide novel insights into disease mechanisms and support personalized diagnosis of disease. For mammalian organisms and in a clinical context, ontologies such as the Human Phenotype Ontology and the Mammalian Phenotype Ontology are widely used to formally and precisely describe phenotypes. We specifically analyze axioms pertaining to phenotypes of collections of entities within a body, and we find that some of the axioms in phenotype ontologies lead to inferences that may not accurately reflect the underlying biological phenomena.</p><p><strong>Results: </strong>We reformulate the phenotypes of collections of entities using an ontological theory of collections. By reformulating phenotypes of collections in phenotypes ontologies, we avoid potentially incorrect inferences pertaining to the cardinality of these collections. We apply our method to two phenotype ontologies and show that the reformulation not only removes some problematic inferences but also quantitatively improves biological data analysis.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"14 1\",\"pages\":\"9\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-023-00290-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-023-00290-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Improving the classification of cardinality phenotypes using collections.
Motivation: Phenotypes are observable characteristics of an organism and they can be highly variable. Information about phenotypes is collected in a clinical context to characterize disease, and is also collected in model organisms and stored in model organism databases where they are used to understand gene functions. Phenotype data is also used in computational data analysis and machine learning methods to provide novel insights into disease mechanisms and support personalized diagnosis of disease. For mammalian organisms and in a clinical context, ontologies such as the Human Phenotype Ontology and the Mammalian Phenotype Ontology are widely used to formally and precisely describe phenotypes. We specifically analyze axioms pertaining to phenotypes of collections of entities within a body, and we find that some of the axioms in phenotype ontologies lead to inferences that may not accurately reflect the underlying biological phenomena.
Results: We reformulate the phenotypes of collections of entities using an ontological theory of collections. By reformulating phenotypes of collections in phenotypes ontologies, we avoid potentially incorrect inferences pertaining to the cardinality of these collections. We apply our method to two phenotype ontologies and show that the reformulation not only removes some problematic inferences but also quantitatively improves biological data analysis.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.