一种在植物中更有效地生产成熟形式的人IL-37的新方法。

IF 2.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Transgenic Research Pub Date : 2023-08-01 DOI:10.1007/s11248-023-00351-z
Yao Zhang, Nadiyah Alqazlan, Zihe Meng, Jingyao Zhao, Nan Liu, Yuxin Zhang, Mingfeng Feng, Shengwu Ma, Aoxue Wang
{"title":"一种在植物中更有效地生产成熟形式的人IL-37的新方法。","authors":"Yao Zhang,&nbsp;Nadiyah Alqazlan,&nbsp;Zihe Meng,&nbsp;Jingyao Zhao,&nbsp;Nan Liu,&nbsp;Yuxin Zhang,&nbsp;Mingfeng Feng,&nbsp;Shengwu Ma,&nbsp;Aoxue Wang","doi":"10.1007/s11248-023-00351-z","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to achieving more efficient production of the mature form of human IL-37 in plants.\",\"authors\":\"Yao Zhang,&nbsp;Nadiyah Alqazlan,&nbsp;Zihe Meng,&nbsp;Jingyao Zhao,&nbsp;Nan Liu,&nbsp;Yuxin Zhang,&nbsp;Mingfeng Feng,&nbsp;Shengwu Ma,&nbsp;Aoxue Wang\",\"doi\":\"10.1007/s11248-023-00351-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-023-00351-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-023-00351-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

白细胞介素-37是一种新发现的细胞因子,在抑制先天炎症和获得性免疫中起关键作用。我们最近在植物中表达了人IL-37b的成熟形式(mat-)和前形式,并证明尽管两种形式的植物制造的IL-37b都具有功能,但pmat-hIL37b的活性明显高于pro-IL-37b。另一方面,与ppro-hIL-37b相比,pmat-hIL-37b的表达量明显较低(100.5µg vs 1.05µg/g鲜叶质量或1% vs 0.01% TSP)。由于ppro-hIL-37b与pmat-hIL-37b的区别在于ppro-hIL-37b含有一个植物细胞无法切割的信号序列,我们推断该信号序列将在稳定ppro-hIL-37b蛋白中发挥关键作用。在这里,我们描述了一种新的方法,通过在信号肽和成熟的hIL-37b之间结合编码烟草蚀刻病毒(TEV)蛋白酶的基因序列,包括在TEV蛋白酶的c端有一个TEV切割位点,来增强植物中pmat1 -hIL-37b的产生。其原理是,当作为sp-TEV-matIL-37b融合蛋白表达时,亲hil -37b信号肽的稳定特性将被授予其融合伙伴,从而提高靶蛋白的产量。融合蛋白随后有望在体内自我切割,产生成熟的pmat-hIL-37b。事实上,当sp- tev - mil -37b融合基因在稳定转化的植株中表达时,检测到二聚体pmat-hIL-37b对应的显著条带,在最佳表达系中表达量达到42.5µg/g鲜叶质量。生物实验表明,植物成熟的pmat-hIL-37b具有功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach to achieving more efficient production of the mature form of human IL-37 in plants.

Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
期刊最新文献
A novel approach to achieving more efficient production of the mature form of human IL-37 in plants. GEnZ explorer: a tool for visualizing agroclimate to inform research and regulatory risk assessment. A DEAD box helicase Psp68 positively regulates salt stress responses in marker-free transgenic rice plants. Development of Agrobacterium-mediated in planta transformation protocol through coleoptile in rice. CRISPR/Cas9-mediated knock-in of masu salmon (Oncorhyncus masou) elongase gene in the melanocortin-4 (mc4r) coding region of channel catfish (Ictalurus punctatus) genome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1