Nathaniel P Bonfanti, Nicholas M Mohr, David C Willms, Roger J Bedimo, Emily Gundert, Kristina L Goff, Erik B Kulstad, Anne M Drewry
{"title":"2019冠状病毒病机械通气患者的核心升温:一项试点研究","authors":"Nathaniel P Bonfanti, Nicholas M Mohr, David C Willms, Roger J Bedimo, Emily Gundert, Kristina L Goff, Erik B Kulstad, Anne M Drewry","doi":"10.1089/ther.2023.0030","DOIUrl":null,"url":null,"abstract":"<p><p>Fever is a recognized protective factor in patients with sepsis, and growing data suggest beneficial effects on outcomes in sepsis with elevated temperature, with a recent pilot randomized controlled trial (RCT) showing lower mortality by warming afebrile sepsis patients in the intensive care unit (ICU). The objective of this prospective single-site RCT was to determine if core warming improves respiratory physiology of mechanically ventilated patients with coronavirus disease 2019 (COVID-19), allowing earlier weaning from ventilation, and greater overall survival. A total of 19 patients with mean age of 60.5 (±12.5) years, 37% female, mean weight 95.1 (±18.6) kg, and mean body mass index 34.5 (±5.9) kg/m<sup>2</sup> with COVID-19 requiring mechanical ventilation were enrolled from September 2020 to February 2022. Patients were randomized 1:1 to standard of care or to receive core warming for 72 hours through an esophageal heat exchanger commonly utilized in critical care and surgical patients. The maximum target temperature was 39.8°C. A total of 10 patients received usual care and 9 patients received esophageal core warming. After 72 hours of warming, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratios were 197 (±32) and 134 (±13.4), cycle thresholds were 30.8 (±6.4) and 31.4 (±3.2), ICU mortalities were 40% and 44%, 30-day mortalities were 30% and 22%, and mean 30-day ventilator-free days were 11.9 (±12.6) and 6.8 (±10.2) for standard of care and warmed patients, respectively (<i>p</i> = NS). This pilot study suggests that core warming of patients with COVID-19 undergoing mechanical ventilation is feasible and appears safe. Optimizing time to achieve febrile-range temperature may require a multimodal temperature management strategy to further evaluate effects on outcome. ClinicalTrials.gov Identifier: NCT04494867.</p>","PeriodicalId":22972,"journal":{"name":"Therapeutic hypothermia and temperature management","volume":" ","pages":"225-229"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698775/pdf/","citationCount":"1","resultStr":"{\"title\":\"Core Warming of Coronavirus Disease 2019 Patients Undergoing Mechanical Ventilation: A Pilot Study.\",\"authors\":\"Nathaniel P Bonfanti, Nicholas M Mohr, David C Willms, Roger J Bedimo, Emily Gundert, Kristina L Goff, Erik B Kulstad, Anne M Drewry\",\"doi\":\"10.1089/ther.2023.0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fever is a recognized protective factor in patients with sepsis, and growing data suggest beneficial effects on outcomes in sepsis with elevated temperature, with a recent pilot randomized controlled trial (RCT) showing lower mortality by warming afebrile sepsis patients in the intensive care unit (ICU). The objective of this prospective single-site RCT was to determine if core warming improves respiratory physiology of mechanically ventilated patients with coronavirus disease 2019 (COVID-19), allowing earlier weaning from ventilation, and greater overall survival. A total of 19 patients with mean age of 60.5 (±12.5) years, 37% female, mean weight 95.1 (±18.6) kg, and mean body mass index 34.5 (±5.9) kg/m<sup>2</sup> with COVID-19 requiring mechanical ventilation were enrolled from September 2020 to February 2022. Patients were randomized 1:1 to standard of care or to receive core warming for 72 hours through an esophageal heat exchanger commonly utilized in critical care and surgical patients. The maximum target temperature was 39.8°C. A total of 10 patients received usual care and 9 patients received esophageal core warming. After 72 hours of warming, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratios were 197 (±32) and 134 (±13.4), cycle thresholds were 30.8 (±6.4) and 31.4 (±3.2), ICU mortalities were 40% and 44%, 30-day mortalities were 30% and 22%, and mean 30-day ventilator-free days were 11.9 (±12.6) and 6.8 (±10.2) for standard of care and warmed patients, respectively (<i>p</i> = NS). This pilot study suggests that core warming of patients with COVID-19 undergoing mechanical ventilation is feasible and appears safe. Optimizing time to achieve febrile-range temperature may require a multimodal temperature management strategy to further evaluate effects on outcome. ClinicalTrials.gov Identifier: NCT04494867.</p>\",\"PeriodicalId\":22972,\"journal\":{\"name\":\"Therapeutic hypothermia and temperature management\",\"volume\":\" \",\"pages\":\"225-229\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698775/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic hypothermia and temperature management\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ther.2023.0030\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic hypothermia and temperature management","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ther.2023.0030","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Core Warming of Coronavirus Disease 2019 Patients Undergoing Mechanical Ventilation: A Pilot Study.
Fever is a recognized protective factor in patients with sepsis, and growing data suggest beneficial effects on outcomes in sepsis with elevated temperature, with a recent pilot randomized controlled trial (RCT) showing lower mortality by warming afebrile sepsis patients in the intensive care unit (ICU). The objective of this prospective single-site RCT was to determine if core warming improves respiratory physiology of mechanically ventilated patients with coronavirus disease 2019 (COVID-19), allowing earlier weaning from ventilation, and greater overall survival. A total of 19 patients with mean age of 60.5 (±12.5) years, 37% female, mean weight 95.1 (±18.6) kg, and mean body mass index 34.5 (±5.9) kg/m2 with COVID-19 requiring mechanical ventilation were enrolled from September 2020 to February 2022. Patients were randomized 1:1 to standard of care or to receive core warming for 72 hours through an esophageal heat exchanger commonly utilized in critical care and surgical patients. The maximum target temperature was 39.8°C. A total of 10 patients received usual care and 9 patients received esophageal core warming. After 72 hours of warming, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratios were 197 (±32) and 134 (±13.4), cycle thresholds were 30.8 (±6.4) and 31.4 (±3.2), ICU mortalities were 40% and 44%, 30-day mortalities were 30% and 22%, and mean 30-day ventilator-free days were 11.9 (±12.6) and 6.8 (±10.2) for standard of care and warmed patients, respectively (p = NS). This pilot study suggests that core warming of patients with COVID-19 undergoing mechanical ventilation is feasible and appears safe. Optimizing time to achieve febrile-range temperature may require a multimodal temperature management strategy to further evaluate effects on outcome. ClinicalTrials.gov Identifier: NCT04494867.
期刊介绍:
Therapeutic Hypothermia and Temperature Management is the first and only journal to cover all aspects of hypothermia and temperature considerations relevant to this exciting field, including its application in cardiac arrest, spinal cord and traumatic brain injury, stroke, burns, and much more. The Journal provides a strong multidisciplinary forum to ensure that research advances are well disseminated, and that therapeutic hypothermia is well understood and used effectively to enhance patient outcomes. Novel findings from translational preclinical investigations as well as clinical studies and trials are featured in original articles, state-of-the-art review articles, protocols and best practices.
Therapeutic Hypothermia and Temperature Management coverage includes:
Temperature mechanisms and cooling strategies
Protocols, risk factors, and drug interventions
Intraoperative considerations
Post-resuscitation cooling
ICU management.