对氧磷和草甘膦诱导DNA双链断裂,但不是II型拓扑异构酶毒素

IF 2.3 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Mutation research. Genetic toxicology and environmental mutagenesis Pub Date : 2023-08-01 DOI:10.1016/j.mrgentox.2023.503657
Regina Montero-Montoya , Karen Suárez-Larios, Luis Serrano-García
{"title":"对氧磷和草甘膦诱导DNA双链断裂,但不是II型拓扑异构酶毒素","authors":"Regina Montero-Montoya ,&nbsp;Karen Suárez-Larios,&nbsp;Luis Serrano-García","doi":"10.1016/j.mrgentox.2023.503657","DOIUrl":null,"url":null,"abstract":"<div><p>We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured.</p><p>Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"890 ","pages":"Article 503657"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paraoxon and glyphosate induce DNA double-strand breaks but are not type II topoisomerase poisons\",\"authors\":\"Regina Montero-Montoya ,&nbsp;Karen Suárez-Larios,&nbsp;Luis Serrano-García\",\"doi\":\"10.1016/j.mrgentox.2023.503657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured.</p><p>Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"890 \",\"pages\":\"Article 503657\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138357182300075X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138357182300075X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们检验了农药对氧磷和草甘膦通过毒害II型拓扑异构酶(topo-II)导致DNA双链断裂(DSB)的假设。G0期外周血淋巴细胞经杀虫剂处理,加或减TopoⅡ抑制剂ICRF-187后,可刺激其增殖;测定了诱导的细胞遗传学损伤。微核、染色质芽、核质桥和核外片段通过杀虫剂处理诱导,而不考虑ICRF-187的预处理。这些结果表明,这些杀虫剂不起拓扑Ⅱ型毒物的作用。DSB的诱导可能通过其他机制发生,例如对参与重组修复的其他蛋白质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paraoxon and glyphosate induce DNA double-strand breaks but are not type II topoisomerase poisons

We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured.

Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
84
审稿时长
105 days
期刊介绍: Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas: New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results). Alternatives to and refinement of the use of animals in genotoxicity testing. Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials. Studies of epigenetic changes in relation to genotoxic effects. The use of structure-activity relationships in predicting genotoxic effects. The isolation and chemical characterization of novel environmental mutagens. The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures. The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing). MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.
期刊最新文献
Introduction Investigation of genetic instability in patients with Diabetes Mellitus type I, II and LADA using buccal micronucleus cytome assay Genotoxicity analysis of a flame retardant, aluminum diethylphosphinate In vitro hepatic 3D cell models and their application in genetic toxicology: A systematic review Disperse Red 1 azo dye: Consequences of low-dose/low-concentration exposures in mice and zebrafish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1