{"title":"电阻抗断层成像在神经病学中的应用。","authors":"Mehri Mirhoseini, Zahra Rezanejad Gatabi, Sayantan Das, Sepideh Joveini, Iman Rezanezhad Gatabi","doi":"10.32598/bcn.2021.3087.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteristics. The high potential of brain EIT is established in real-time supervision and early recognition of cerebral brain infarction, hemorrhage, and other diseases. In this paper, we review the studies on the neurological applications of EIT.</p><p><strong>Methods: </strong>EIT calculates the internal electrical conductivity distribution of an organ by measuring its surface impedance. A series of electrodes are placed on the surface of the target tissue, and small alternating currents are injected. The related voltages are then observed and analyzed. The electrical permittivity and conductivity distributions inside the tissue are reconstructed by measuring the electrode voltages.</p><p><strong>Results: </strong>The electrical characteristic of biological tissues is remarkably dependent on their structures. Some tissues are better electrical conductors than the others since they have more ions that can carry the electrical charges. This difference is attributed to changes in cellular water content, membrane properties, and destruction of tight junctions within cell membranes.</p><p><strong>Conclusion: </strong>EIT is an extremely practical device for brain imaging, capturing fast electrical activities in the brain, imaging epileptic seizures, detecting intracranial bleeding, detecting cerebral edema, and diagnosing stroke.</p>","PeriodicalId":8701,"journal":{"name":"Basic and Clinical Neuroscience","volume":"13 5","pages":"595-608"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bf/85/BCN-13-595.PMC10258591.pdf","citationCount":"0","resultStr":"{\"title\":\"Applications of Electrical Impedance Tomography in Neurology.\",\"authors\":\"Mehri Mirhoseini, Zahra Rezanejad Gatabi, Sayantan Das, Sepideh Joveini, Iman Rezanezhad Gatabi\",\"doi\":\"10.32598/bcn.2021.3087.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteristics. The high potential of brain EIT is established in real-time supervision and early recognition of cerebral brain infarction, hemorrhage, and other diseases. In this paper, we review the studies on the neurological applications of EIT.</p><p><strong>Methods: </strong>EIT calculates the internal electrical conductivity distribution of an organ by measuring its surface impedance. A series of electrodes are placed on the surface of the target tissue, and small alternating currents are injected. The related voltages are then observed and analyzed. The electrical permittivity and conductivity distributions inside the tissue are reconstructed by measuring the electrode voltages.</p><p><strong>Results: </strong>The electrical characteristic of biological tissues is remarkably dependent on their structures. Some tissues are better electrical conductors than the others since they have more ions that can carry the electrical charges. This difference is attributed to changes in cellular water content, membrane properties, and destruction of tight junctions within cell membranes.</p><p><strong>Conclusion: </strong>EIT is an extremely practical device for brain imaging, capturing fast electrical activities in the brain, imaging epileptic seizures, detecting intracranial bleeding, detecting cerebral edema, and diagnosing stroke.</p>\",\"PeriodicalId\":8701,\"journal\":{\"name\":\"Basic and Clinical Neuroscience\",\"volume\":\"13 5\",\"pages\":\"595-608\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bf/85/BCN-13-595.PMC10258591.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Clinical Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/bcn.2021.3087.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/bcn.2021.3087.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Applications of Electrical Impedance Tomography in Neurology.
Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteristics. The high potential of brain EIT is established in real-time supervision and early recognition of cerebral brain infarction, hemorrhage, and other diseases. In this paper, we review the studies on the neurological applications of EIT.
Methods: EIT calculates the internal electrical conductivity distribution of an organ by measuring its surface impedance. A series of electrodes are placed on the surface of the target tissue, and small alternating currents are injected. The related voltages are then observed and analyzed. The electrical permittivity and conductivity distributions inside the tissue are reconstructed by measuring the electrode voltages.
Results: The electrical characteristic of biological tissues is remarkably dependent on their structures. Some tissues are better electrical conductors than the others since they have more ions that can carry the electrical charges. This difference is attributed to changes in cellular water content, membrane properties, and destruction of tight junctions within cell membranes.
Conclusion: EIT is an extremely practical device for brain imaging, capturing fast electrical activities in the brain, imaging epileptic seizures, detecting intracranial bleeding, detecting cerebral edema, and diagnosing stroke.
期刊介绍:
BCN is an international multidisciplinary journal that publishes editorials, original full-length research articles, short communications, reviews, methodological papers, commentaries, perspectives and “news and reports” in the broad fields of developmental, molecular, cellular, system, computational, behavioral, cognitive, and clinical neuroscience. No area in the neural related sciences is excluded from consideration, although priority is given to studies that provide applied insights into the functioning of the nervous system. BCN aims to advance our understanding of organization and function of the nervous system in health and disease, thereby improving the diagnosis and treatment of neural-related disorders. Manuscripts submitted to BCN should describe novel results generated by experiments that were guided by clearly defined aims or hypotheses. BCN aims to provide serious ties in interdisciplinary communication, accessibility to a broad readership inside Iran and the region and also in all other international academic sites, effective peer review process, and independence from all possible non-scientific interests. BCN also tries to empower national, regional and international collaborative networks in the field of neuroscience in Iran, Middle East, Central Asia and North Africa and to be the voice of the Iranian and regional neuroscience community in the world of neuroscientists. In this way, the journal encourages submission of editorials, review papers, commentaries, methodological notes and perspectives that address this scope.