{"title":"TALAIA:蛋白质结构的3D视觉词典。","authors":"Mercè Alemany-Chavarria, Jaime Rodríguez-Guerra, Jean-Didier Maréchal","doi":"10.1093/bioinformatics/btad476","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction.</p><p><strong>Results: </strong>We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423020/pdf/","citationCount":"0","resultStr":"{\"title\":\"TALAIA: a 3D visual dictionary for protein structures.\",\"authors\":\"Mercè Alemany-Chavarria, Jaime Rodríguez-Guerra, Jean-Didier Maréchal\",\"doi\":\"10.1093/bioinformatics/btad476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction.</p><p><strong>Results: </strong>We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad476\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad476","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
TALAIA: a 3D visual dictionary for protein structures.
Motivation: Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction.
Results: We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.