首页 > 材料学

【转载】ACS ES&T Engineering | 生物强化缓解高温厌氧消化酸氨协同抑制过程中外源和土著微生物的响应

纳米酶 Nanozymes 2025-01-10 13:00
文章摘要
本研究由同济大学环境科学与工程学院吕凡研究员团队开展,旨在通过生物强化技术缓解高温厌氧消化过程中酸氨协同抑制的问题。研究开发了一种功能菌组合,包括Thermacetogenium、Coprothermobacter、Methanothermobacter和Methanosarcina,这些菌株能够同步强化互营乙酸氧化、乙酸营养型和氢营养型产甲烷途径。实验结果表明,在不同程度的酸氨协同抑制条件下,该功能菌组合显著提升了甲烷产量,最高可达705%。此外,研究还发现,生物强化不仅促进了底物乙酸盐的降解,还改变了微生物群落结构,增强了氢营养型产甲烷途径的功能基因表达。研究结论指出,Coprothermobacter与氢营养型产甲烷菌Methanothermobacter和Methanoculleus形成的共生功能菌组合在高温厌氧消化酸氨抑制反应器中具有显著的强化效果。
【转载】ACS ES&T Engineering | 生物强化缓解高温厌氧消化酸氨协同抑制过程中外源和土著微生物的响应
本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者速来电或来函联系。
最新文章
Adv. Mater. | 超蕃单分子酶研究新进展—光催化高效高选择性产生过氧化氢
Adv. Mater. | 超蕃单分子酶研究新进展—光催化高效高选择性产生过氧化氢
过氧化氢(H2O2)是一种在消毒灭菌、废水处理、纸浆与造纸工业以及精细有机合成中广泛使用的重要基础化学品。预计到2027年,其全球市场需求将超570万吨,并仍保持快速增长态势。然而,当前主流的工业制备
13小时前
Cell | 蛋白质降解新突破!超分子靶向嵌合体实现时空精准蛋白降解
Cell | 蛋白质降解新突破!超分子靶向嵌合体实现时空精准蛋白降解
大家好,今天分享一篇发表在《Cell》上的研究,题为 “Multimodal supramolecular targeting chimeras enable spatiotemporally res
2026-02-06
Angewandte Chemie | 自然酶启发的“双人舞”:新型纳米酶实现高效绿氨合成
Angewandte Chemie | 自然酶启发的“双人舞”:新型纳米酶实现高效绿氨合成
当铁团簇遇见金属磷化物,电催化合成氨的奇迹就此诞生你是否想象过,一种材料能够像自然界中的两种酶一样,高效“接力”催化化学反应?近日,来自中国科学院深圳先进技术研究院、北京理工大学、湖南大学的科学家们设
2026-02-06
Anal. Chem. | 基于非对称配位工程的Fe-N\u2083S纳米酶用于超低背景比色免疫测定
Anal. Chem. | 基于非对称配位工程的Fe-N\u2083S纳米酶用于超低背景比色免疫测定
纳米酶是一类兼具类酶活性与纳米材料特性的新型人工酶,凭借高稳定性、易制备、成本低等优势,在比色免疫分析领域展现出巨大应用潜力。然而,传统氧化还原型纳米酶常存在氧化酶(OXD)活性过高的问题,易导致体系
2026-02-06
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1