Biomimetic construction of phospholipid membranes by direct aminolysis ligations.

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2023-08-11 eCollection Date: 2023-10-06 DOI:10.1098/rsfs.2023.0019
Federica A Souto-Trinei, Roberto J Brea, Neal K Devaraj
{"title":"Biomimetic construction of phospholipid membranes by direct aminolysis ligations.","authors":"Federica A Souto-Trinei, Roberto J Brea, Neal K Devaraj","doi":"10.1098/rsfs.2023.0019","DOIUrl":null,"url":null,"abstract":"<p><p>Construction of artificial cells requires the development of straightforward methods for mimicking natural phospholipid membrane formation. Here we describe the use of direct aminolysis ligations to spontaneously generate biomimetic phospholipid membranes from water-soluble starting materials. Additionally, we explore the suitability of such biomimetic approaches for driving the <i>in situ</i> formation of native phospholipid membranes. Our studies suggest that non-enzymatic ligation reactions could have been important for the synthesis of phospholipid-like membranes during the origin of life, and might be harnessed as simplified methods to enable the generation of lipid compartments in artificial cells.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 5","pages":"20230019"},"PeriodicalIF":3.6000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415742/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Construction of artificial cells requires the development of straightforward methods for mimicking natural phospholipid membrane formation. Here we describe the use of direct aminolysis ligations to spontaneously generate biomimetic phospholipid membranes from water-soluble starting materials. Additionally, we explore the suitability of such biomimetic approaches for driving the in situ formation of native phospholipid membranes. Our studies suggest that non-enzymatic ligation reactions could have been important for the synthesis of phospholipid-like membranes during the origin of life, and might be harnessed as simplified methods to enable the generation of lipid compartments in artificial cells.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过直接氨解连接的磷脂膜的仿生构建。
人工细胞的构建需要开发模拟天然磷脂膜形成的直接方法。在这里,我们描述了使用直接氨解连接从水溶性起始材料自发产生仿生磷脂膜。此外,我们还探索了这种仿生方法在原位形成天然磷脂膜方面的适用性。我们的研究表明,在生命起源过程中,非酶连接反应可能对磷脂样膜的合成很重要,并可能被用作简化方法,使人工细胞中能够产生脂质区室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Fundamental constraints to the logic of living systems. The legacy and evolvability of Pere Alberch's ideas. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1