Stabilizing Polymer Coatings Alter the Protein Corona of DNA Origami and Can Be Engineered to Bias the Cellular Uptake

IF 4.7 Q1 POLYMER SCIENCE ACS polymers Au Pub Date : 2023-06-07 DOI:10.1021/acspolymersau.3c00009
Hugo J. Rodríguez-Franco, Jorieke Weiden and Maartje M. C. Bastings*, 
{"title":"Stabilizing Polymer Coatings Alter the Protein Corona of DNA Origami and Can Be Engineered to Bias the Cellular Uptake","authors":"Hugo J. Rodríguez-Franco,&nbsp;Jorieke Weiden and Maartje M. C. Bastings*,&nbsp;","doi":"10.1021/acspolymersau.3c00009","DOIUrl":null,"url":null,"abstract":"<p >With DNA-based nanomaterials being designed for applications in cellular environments, the need arises to accurately understand their surface interactions toward biological targets. As for any material exposed to protein-rich cell culture conditions, a protein corona will establish around DNA nanoparticles, potentially altering the a-priori designed particle function. Here, we first set out to identify the protein corona around DNA origami nanomaterials, taking into account the application of stabilizing block co-polymer coatings (oligolysine-1kPEG or oligolysine-5kPEG) widely used to ensure particle integrity. By implementing a label-free methodology, the distinct polymer coating conditions show unique protein profiles, predominantly defined by differences in the molecular weight and isoelectric point of the adsorbed proteins. Interestingly, none of the applied coatings reduced the diversity of the proteins detected within the specific coronae. We then biased the protein corona through pre-incubation with selected proteins and show significant changes in the cell uptake. Our study contributes to a deeper understanding of the complex interplay between DNA nanomaterials, proteins, and cells at the bio-interface.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 4","pages":"344–353"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/37/lg3c00009.PMC10416322.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With DNA-based nanomaterials being designed for applications in cellular environments, the need arises to accurately understand their surface interactions toward biological targets. As for any material exposed to protein-rich cell culture conditions, a protein corona will establish around DNA nanoparticles, potentially altering the a-priori designed particle function. Here, we first set out to identify the protein corona around DNA origami nanomaterials, taking into account the application of stabilizing block co-polymer coatings (oligolysine-1kPEG or oligolysine-5kPEG) widely used to ensure particle integrity. By implementing a label-free methodology, the distinct polymer coating conditions show unique protein profiles, predominantly defined by differences in the molecular weight and isoelectric point of the adsorbed proteins. Interestingly, none of the applied coatings reduced the diversity of the proteins detected within the specific coronae. We then biased the protein corona through pre-incubation with selected proteins and show significant changes in the cell uptake. Our study contributes to a deeper understanding of the complex interplay between DNA nanomaterials, proteins, and cells at the bio-interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳定聚合物涂层改变DNA折纸的蛋白质电晕并可被工程化以偏置细胞吸收
随着基于DNA的纳米材料被设计用于细胞环境,需要准确了解它们与生物目标的表面相互作用。对于任何暴露于富含蛋白质的细胞培养条件下的材料,DNA纳米颗粒周围都会形成蛋白质冠,这可能会改变预先设计的颗粒功能。在这里,我们首先着手识别DNA折纸纳米材料周围的蛋白质冠,考虑到广泛用于确保颗粒完整性的稳定嵌段共聚物涂层(低聚赖氨酸-1kPEG或低聚赖氨酰-5kPEG)的应用。通过实施无标记方法,不同的聚合物涂层条件显示出独特的蛋白质图谱,主要由吸附蛋白质的分子量和等电点的差异来定义。有趣的是,没有一种涂层降低了在特定冠状病毒中检测到的蛋白质的多样性。然后,我们通过与选定的蛋白质预孵育来偏置蛋白质冠,并显示细胞摄取的显著变化。我们的研究有助于更深入地理解DNA纳米材料、蛋白质和生物界面细胞之间的复杂相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Design of Highly Conductive PILs by Simple Modification of Poly(epichlorohydrin-co-ethylene oxide) with Monosubstituted Imidazoles Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1