首页 > 最新文献

ACS polymers Au最新文献

英文 中文
Improving the Flame Retardancy and Mechanical Properties of Vinyl Ester Resins through Maleated Epoxidized Corn Oil/Epoxy Resin Additives for Sustainable Thermoset Composites
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-12-27 DOI: 10.1021/acspolymersau.4c0008810.1021/acspolymersau.4c00088
Maurelio Cabo Jr.*, Prabhakar Manoj Narendra, Dong-Woo Lee, Ruiwen Yu, Vinitsa Chanthavong and Jung-Il Song*, 

Thermoset polymers serve a significant role in modern industrial applications, and with a global annual output of over 65 million tons to meet this growing demand for sustainable materials, scientists and engineers need to go beyond what makes a material best for a certain use. Vinyl ester (VE) is a thermosetting polymer derived from polyester and epoxy resin. Its mixing properties distinguish it from its competitors, offering advantages in terms of curing efficiency, wettability, corrosion resistance, and low cost, which are crucial for modern industrial applications. Researchers have continuously explored the modifications of the intrinsic properties of VE using additives to enhance its flame retardancy and mechanical characteristics for more cost-effective and environmentally friendly materials applicable across various industries. In this study, we developed an easy-to-process eco-thermoset blend additive (50% v/v), known as maleated epoxidized corn oil/epoxy resin (MEPECO). Adding an optimal amount of MEPECO (5%) to the VE resin significantly improved its flame retardancy properties, as assessed by pyrolysis-combustion flow calorimetry, contact angle measurements, and thermogravimetric analysis. The mechanical properties, specifically strength, also showed substantial enhancement with the same optimal amount of MEPECO, as determined by flexural testing and spectral analysis. However, during the digestion of the eco-thermoset resin, the modulus and impact energy were notably lower owing to shear-yielding localization, as evidenced by the morphological analysis. This paper presents a novel in situ and straightforward technique for the easy and effective blending of eco-thermoset additives into petroleum-based epoxy resins, thereby facilitating their potential application in the development of sustainable green composite materials.

{"title":"Improving the Flame Retardancy and Mechanical Properties of Vinyl Ester Resins through Maleated Epoxidized Corn Oil/Epoxy Resin Additives for Sustainable Thermoset Composites","authors":"Maurelio Cabo Jr.*,&nbsp;Prabhakar Manoj Narendra,&nbsp;Dong-Woo Lee,&nbsp;Ruiwen Yu,&nbsp;Vinitsa Chanthavong and Jung-Il Song*,&nbsp;","doi":"10.1021/acspolymersau.4c0008810.1021/acspolymersau.4c00088","DOIUrl":"https://doi.org/10.1021/acspolymersau.4c00088https://doi.org/10.1021/acspolymersau.4c00088","url":null,"abstract":"<p >Thermoset polymers serve a significant role in modern industrial applications, and with a global annual output of over 65 million tons to meet this growing demand for sustainable materials, scientists and engineers need to go beyond what makes a material best for a certain use. Vinyl ester (VE) is a thermosetting polymer derived from polyester and epoxy resin. Its mixing properties distinguish it from its competitors, offering advantages in terms of curing efficiency, wettability, corrosion resistance, and low cost, which are crucial for modern industrial applications. Researchers have continuously explored the modifications of the intrinsic properties of VE using additives to enhance its flame retardancy and mechanical characteristics for more cost-effective and environmentally friendly materials applicable across various industries. In this study, we developed an easy-to-process eco-thermoset blend additive (50% v/v), known as maleated epoxidized corn oil/epoxy resin (MEPECO). Adding an optimal amount of MEPECO (5%) to the VE resin significantly improved its flame retardancy properties, as assessed by pyrolysis-combustion flow calorimetry, contact angle measurements, and thermogravimetric analysis. The mechanical properties, specifically strength, also showed substantial enhancement with the same optimal amount of MEPECO, as determined by flexural testing and spectral analysis. However, during the digestion of the eco-thermoset resin, the modulus and impact energy were notably lower owing to shear-yielding localization, as evidenced by the morphological analysis. This paper presents a novel in situ and straightforward technique for the easy and effective blending of eco-thermoset additives into petroleum-based epoxy resins, thereby facilitating their potential application in the development of sustainable green composite materials.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"45–58 45–58"},"PeriodicalIF":4.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Flame Retardancy and Mechanical Properties of Vinyl Ester Resins through Maleated Epoxidized Corn Oil/Epoxy Resin Additives for Sustainable Thermoset Composites.
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-12-27 eCollection Date: 2025-02-12 DOI: 10.1021/acspolymersau.4c00088
Maurelio Cabo, Prabhakar Manoj Narendra, Dong-Woo Lee, Ruiwen Yu, Vinitsa Chanthavong, Jung-Il Song

Thermoset polymers serve a significant role in modern industrial applications, and with a global annual output of over 65 million tons to meet this growing demand for sustainable materials, scientists and engineers need to go beyond what makes a material best for a certain use. Vinyl ester (VE) is a thermosetting polymer derived from polyester and epoxy resin. Its mixing properties distinguish it from its competitors, offering advantages in terms of curing efficiency, wettability, corrosion resistance, and low cost, which are crucial for modern industrial applications. Researchers have continuously explored the modifications of the intrinsic properties of VE using additives to enhance its flame retardancy and mechanical characteristics for more cost-effective and environmentally friendly materials applicable across various industries. In this study, we developed an easy-to-process eco-thermoset blend additive (50% v/v), known as maleated epoxidized corn oil/epoxy resin (MEPECO). Adding an optimal amount of MEPECO (5%) to the VE resin significantly improved its flame retardancy properties, as assessed by pyrolysis-combustion flow calorimetry, contact angle measurements, and thermogravimetric analysis. The mechanical properties, specifically strength, also showed substantial enhancement with the same optimal amount of MEPECO, as determined by flexural testing and spectral analysis. However, during the digestion of the eco-thermoset resin, the modulus and impact energy were notably lower owing to shear-yielding localization, as evidenced by the morphological analysis. This paper presents a novel in situ and straightforward technique for the easy and effective blending of eco-thermoset additives into petroleum-based epoxy resins, thereby facilitating their potential application in the development of sustainable green composite materials.

{"title":"Improving the Flame Retardancy and Mechanical Properties of Vinyl Ester Resins through Maleated Epoxidized Corn Oil/Epoxy Resin Additives for Sustainable Thermoset Composites.","authors":"Maurelio Cabo, Prabhakar Manoj Narendra, Dong-Woo Lee, Ruiwen Yu, Vinitsa Chanthavong, Jung-Il Song","doi":"10.1021/acspolymersau.4c00088","DOIUrl":"10.1021/acspolymersau.4c00088","url":null,"abstract":"<p><p>Thermoset polymers serve a significant role in modern industrial applications, and with a global annual output of over 65 million tons to meet this growing demand for sustainable materials, scientists and engineers need to go beyond what makes a material best for a certain use. Vinyl ester (VE) is a thermosetting polymer derived from polyester and epoxy resin. Its mixing properties distinguish it from its competitors, offering advantages in terms of curing efficiency, wettability, corrosion resistance, and low cost, which are crucial for modern industrial applications. Researchers have continuously explored the modifications of the intrinsic properties of VE using additives to enhance its flame retardancy and mechanical characteristics for more cost-effective and environmentally friendly materials applicable across various industries. In this study, we developed an easy-to-process eco-thermoset blend additive (50% v/v), known as maleated epoxidized corn oil/epoxy resin (MEPECO). Adding an optimal amount of MEPECO (5%) to the VE resin significantly improved its flame retardancy properties, as assessed by pyrolysis-combustion flow calorimetry, contact angle measurements, and thermogravimetric analysis. The mechanical properties, specifically strength, also showed substantial enhancement with the same optimal amount of MEPECO, as determined by flexural testing and spectral analysis. However, during the digestion of the eco-thermoset resin, the modulus and impact energy were notably lower owing to shear-yielding localization, as evidenced by the morphological analysis. This paper presents a novel in situ and straightforward technique for the easy and effective blending of eco-thermoset additives into petroleum-based epoxy resins, thereby facilitating their potential application in the development of sustainable green composite materials.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"45-58"},"PeriodicalIF":4.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring DNA Origami Protection: A Study of Oligolysine-PEG Coatings for Improved Colloidal, Structural, and Functional Integrity.
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-12-20 eCollection Date: 2025-02-12 DOI: 10.1021/acspolymersau.4c00085
Hugo J Rodríguez-Franco, Pauline B M Hendrickx, Maartje M C Bastings

Application of protective polymer coatings to enhance the biostability of DNA-based nanomaterials (DONs) has become common practice in in vitro and in vivo experiments. While the functional effect of these coatings is obvious, a detailed molecular picture of what is protected and for how long remains unclear. Additionally, the use of the oligolysine-1kPEG protective polymer has been limited due to aggregation issues. In this study, we evaluated the colloidal stability, structural integrity, and functional preservation of DONs coated with oligolysine (K)-1k/5kPEG block copolymers. Dynamic light scattering and transmission electron microscopy were employed to assess colloidal stability before and after degradation. A FRET-based assay was developed to monitor the directionality of degradation, while quantitative PCR measured the protection of functional DNA handles, crucial for the design of ligand-functionalized DONs. Our results show that K10-1kPEG, while prone to aggregation, can offer similar protection against nucleases as K10-5kPEG, provided buffer conditions are carefully chosen. Maintaining the colloidal, structural, and functional stability before and after nuclease exposure supports DON applications, particularly at the biointerface. These insights provide valuable guidelines for selecting the most effective protection strategy and enhancing DON functionality across diverse biological environments.

{"title":"Tailoring DNA Origami Protection: A Study of Oligolysine-PEG Coatings for Improved Colloidal, Structural, and Functional Integrity.","authors":"Hugo J Rodríguez-Franco, Pauline B M Hendrickx, Maartje M C Bastings","doi":"10.1021/acspolymersau.4c00085","DOIUrl":"10.1021/acspolymersau.4c00085","url":null,"abstract":"<p><p>Application of protective polymer coatings to enhance the biostability of DNA-based nanomaterials (DONs) has become common practice in <i>in vitro</i> and <i>in vivo</i> experiments. While the functional effect of these coatings is obvious, a detailed molecular picture of what is protected and for how long remains unclear. Additionally, the use of the oligolysine-1kPEG protective polymer has been limited due to aggregation issues. In this study, we evaluated the colloidal stability, structural integrity, and functional preservation of DONs coated with oligolysine (K)-1k/5kPEG block copolymers. Dynamic light scattering and transmission electron microscopy were employed to assess colloidal stability before and after degradation. A FRET-based assay was developed to monitor the directionality of degradation, while quantitative PCR measured the protection of functional DNA handles, crucial for the design of ligand-functionalized DONs. Our results show that K<sub>10</sub>-1kPEG, while prone to aggregation, can offer similar protection against nucleases as K<sub>10</sub>-5kPEG, provided buffer conditions are carefully chosen. Maintaining the colloidal, structural, and functional stability before and after nuclease exposure supports DON applications, particularly at the biointerface. These insights provide valuable guidelines for selecting the most effective protection strategy and enhancing DON functionality across diverse biological environments.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"35-44"},"PeriodicalIF":4.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring DNA Origami Protection: A Study of Oligolysine-PEG Coatings for Improved Colloidal, Structural, and Functional Integrity
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-12-19 DOI: 10.1021/acspolymersau.4c0008510.1021/acspolymersau.4c00085
Hugo J. Rodríguez-Franco, Pauline B. M. Hendrickx and Maartje M. C. Bastings*, 

Application of protective polymer coatings to enhance the biostability of DNA-based nanomaterials (DONs) has become common practice in in vitro and in vivo experiments. While the functional effect of these coatings is obvious, a detailed molecular picture of what is protected and for how long remains unclear. Additionally, the use of the oligolysine-1kPEG protective polymer has been limited due to aggregation issues. In this study, we evaluated the colloidal stability, structural integrity, and functional preservation of DONs coated with oligolysine (K)-1k/5kPEG block copolymers. Dynamic light scattering and transmission electron microscopy were employed to assess colloidal stability before and after degradation. A FRET-based assay was developed to monitor the directionality of degradation, while quantitative PCR measured the protection of functional DNA handles, crucial for the design of ligand-functionalized DONs. Our results show that K10-1kPEG, while prone to aggregation, can offer similar protection against nucleases as K10-5kPEG, provided buffer conditions are carefully chosen. Maintaining the colloidal, structural, and functional stability before and after nuclease exposure supports DON applications, particularly at the biointerface. These insights provide valuable guidelines for selecting the most effective protection strategy and enhancing DON functionality across diverse biological environments.

应用保护性聚合物涂层来提高 DNA 纳米材料(DONs)的生物稳定性已成为体外和体内实验中的常见做法。虽然这些涂层的功能效果显而易见,但保护什么以及保护多长时间的详细分子图谱仍不清楚。此外,由于低聚赖氨酸-1kPEG 保护性聚合物的聚集问题,其使用受到了限制。在本研究中,我们评估了涂有寡聚赖氨酸(K)-1k/5kPEG 嵌段共聚物的 DONs 的胶体稳定性、结构完整性和功能性保护。采用动态光散射和透射电子显微镜评估降解前后的胶体稳定性。我们还开发了一种基于 FRET 的检测方法来监测降解的方向性,而定量 PCR 则测量了功能 DNA 手柄的保护情况,这对于配体功能化 DONs 的设计至关重要。我们的研究结果表明,K10-1kPEG 虽然容易发生聚集,但只要仔细选择缓冲条件,就能提供与 K10-5kPEG 类似的抗核酸酶保护。在核酸酶暴露前后保持胶体、结构和功能的稳定性有助于 DON 的应用,尤其是在生物界面的应用。这些见解为选择最有效的保护策略和增强 DON 在各种生物环境中的功能提供了宝贵的指导。
{"title":"Tailoring DNA Origami Protection: A Study of Oligolysine-PEG Coatings for Improved Colloidal, Structural, and Functional Integrity","authors":"Hugo J. Rodríguez-Franco,&nbsp;Pauline B. M. Hendrickx and Maartje M. C. Bastings*,&nbsp;","doi":"10.1021/acspolymersau.4c0008510.1021/acspolymersau.4c00085","DOIUrl":"https://doi.org/10.1021/acspolymersau.4c00085https://doi.org/10.1021/acspolymersau.4c00085","url":null,"abstract":"<p >Application of protective polymer coatings to enhance the biostability of DNA-based nanomaterials (DONs) has become common practice in <i>in vitro</i> and <i>in vivo</i> experiments. While the functional effect of these coatings is obvious, a detailed molecular picture of what is protected and for how long remains unclear. Additionally, the use of the oligolysine-1kPEG protective polymer has been limited due to aggregation issues. In this study, we evaluated the colloidal stability, structural integrity, and functional preservation of DONs coated with oligolysine (K)-1k/5kPEG block copolymers. Dynamic light scattering and transmission electron microscopy were employed to assess colloidal stability before and after degradation. A FRET-based assay was developed to monitor the directionality of degradation, while quantitative PCR measured the protection of functional DNA handles, crucial for the design of ligand-functionalized DONs. Our results show that K<sub>10</sub>-1kPEG, while prone to aggregation, can offer similar protection against nucleases as K<sub>10</sub>-5kPEG, provided buffer conditions are carefully chosen. Maintaining the colloidal, structural, and functional stability before and after nuclease exposure supports DON applications, particularly at the biointerface. These insights provide valuable guidelines for selecting the most effective protection strategy and enhancing DON functionality across diverse biological environments.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"35–44 35–44"},"PeriodicalIF":4.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemoenzymatic Synthesis of Poly-l-lysine via Esterification with Alcohol in One-Pot
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-12-16 DOI: 10.1021/acspolymersau.4c0007310.1021/acspolymersau.4c00073
Kayo Terada, Kousuke Tsuchiya, Alexandros Lamprou and Keiji Numata*, 

Chemoenzymatic polymerization (CEP) using enzymes as catalysts is gaining attention as an environmentally friendly method for synthesizing polypeptides. This method proceeds under mild conditions in aqueous solvents and leverages the substrate specificity of enzymes, allowing polymerization reactions to occur without the need to protect reactive side-chain functional groups. However, the monomers used must have esterified C-termini, such as amino acids or oligopeptides. In this study, we used l-lysine (Lys-OH) as a model example and performed one-pot CEP with papain without isolating the esterified lysine. Esterification of Lys-OH was achieved by using hydrochloric acid as a catalyst in ethanol, and one-pot polymerization resulted in poly-l-lysine (polyLys) with a peak top degree of polymerization (DP) of 6 and a maximum DP of 18, with a 31% conversion from the nonesterified lysine. The obtained polyLys was all α-linked, demonstrating that regioselective polymerization was successfully achieved even with one-pot CEP.

{"title":"Chemoenzymatic Synthesis of Poly-l-lysine via Esterification with Alcohol in One-Pot","authors":"Kayo Terada,&nbsp;Kousuke Tsuchiya,&nbsp;Alexandros Lamprou and Keiji Numata*,&nbsp;","doi":"10.1021/acspolymersau.4c0007310.1021/acspolymersau.4c00073","DOIUrl":"https://doi.org/10.1021/acspolymersau.4c00073https://doi.org/10.1021/acspolymersau.4c00073","url":null,"abstract":"<p >Chemoenzymatic polymerization (CEP) using enzymes as catalysts is gaining attention as an environmentally friendly method for synthesizing polypeptides. This method proceeds under mild conditions in aqueous solvents and leverages the substrate specificity of enzymes, allowing polymerization reactions to occur without the need to protect reactive side-chain functional groups. However, the monomers used must have esterified C-termini, such as amino acids or oligopeptides. In this study, we used <span>l</span>-lysine (Lys-OH) as a model example and performed one-pot CEP with papain without isolating the esterified lysine. Esterification of Lys-OH was achieved by using hydrochloric acid as a catalyst in ethanol, and one-pot polymerization resulted in poly-<span>l</span>-lysine (polyLys) with a peak top degree of polymerization (DP) of 6 and a maximum DP of 18, with a 31% conversion from the nonesterified lysine. The obtained polyLys was all α-linked, demonstrating that regioselective polymerization was successfully achieved even with one-pot CEP.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"26–34 26–34"},"PeriodicalIF":4.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemoenzymatic Synthesis of Poly-l-lysine via Esterification with Alcohol in One-Pot.
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-12-16 eCollection Date: 2025-02-12 DOI: 10.1021/acspolymersau.4c00073
Kayo Terada, Kousuke Tsuchiya, Alexandros Lamprou, Keiji Numata

Chemoenzymatic polymerization (CEP) using enzymes as catalysts is gaining attention as an environmentally friendly method for synthesizing polypeptides. This method proceeds under mild conditions in aqueous solvents and leverages the substrate specificity of enzymes, allowing polymerization reactions to occur without the need to protect reactive side-chain functional groups. However, the monomers used must have esterified C-termini, such as amino acids or oligopeptides. In this study, we used l-lysine (Lys-OH) as a model example and performed one-pot CEP with papain without isolating the esterified lysine. Esterification of Lys-OH was achieved by using hydrochloric acid as a catalyst in ethanol, and one-pot polymerization resulted in poly-l-lysine (polyLys) with a peak top degree of polymerization (DP) of 6 and a maximum DP of 18, with a 31% conversion from the nonesterified lysine. The obtained polyLys was all α-linked, demonstrating that regioselective polymerization was successfully achieved even with one-pot CEP.

{"title":"Chemoenzymatic Synthesis of Poly-l-lysine via Esterification with Alcohol in One-Pot.","authors":"Kayo Terada, Kousuke Tsuchiya, Alexandros Lamprou, Keiji Numata","doi":"10.1021/acspolymersau.4c00073","DOIUrl":"10.1021/acspolymersau.4c00073","url":null,"abstract":"<p><p>Chemoenzymatic polymerization (CEP) using enzymes as catalysts is gaining attention as an environmentally friendly method for synthesizing polypeptides. This method proceeds under mild conditions in aqueous solvents and leverages the substrate specificity of enzymes, allowing polymerization reactions to occur without the need to protect reactive side-chain functional groups. However, the monomers used must have esterified C-termini, such as amino acids or oligopeptides. In this study, we used l-lysine (Lys-OH) as a model example and performed one-pot CEP with papain without isolating the esterified lysine. Esterification of Lys-OH was achieved by using hydrochloric acid as a catalyst in ethanol, and one-pot polymerization resulted in poly-l-lysine (polyLys) with a peak top degree of polymerization (DP) of 6 and a maximum DP of 18, with a 31% conversion from the nonesterified lysine. The obtained polyLys was all α-linked, demonstrating that regioselective polymerization was successfully achieved even with one-pot CEP.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"26-34"},"PeriodicalIF":4.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the Morphology of Immiscible Polymer Blend-Based Hybrid Nanocomposite for Improving Microwave Absorption Response
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-11-28 DOI: 10.1021/acspolymersau.4c0008710.1021/acspolymersau.4c00087
Erick Gabriel Ribeiro dos Anjos*, Tayra Rodrigues Brazil, Mirabel Cerqueira Rezende, Juliano Marini, Uttandaraman Sundararaj, Luiz Antonio Pessan and Fabio Roberto Passador*, 

Polymer-blend-based nanocomposites incorporating carbon nanomaterials hold significant potential for microwave absorption materials (MAM) applications. This study investigates the microwave absorption response of hybrid nanocomposites composed of multiwalled carbon nanotubes (MWCNT) and nanographite, prepared using industrial-like melt-mixing masterbatch strategies in a polycarbonate/acrylonitrile-butadiene-styrene copolymer (PC/ABS) blend matrix with varying blend ratios (100/0, 80/20, 60/40, 50/50, 40/60, 20/80, and 0/100) and a constant filler content (2 wt % MWCNT and 2 wt % nanographite). Furthermore, the PC/ABS (40/60) blend-based nanocomposite was prepared with the addition of a compatibilizer, 5 wt % of maleic anhydride grafted ABS (ABS-g-MAH), to verify possible changes in morphology. Morphology, rheology, mechanical, electrical, and electromagnetic properties were correlated. From a morphological perspective, a preferential distribution of MWCNTs within the PC phase was observed, with the different blend ratios leading to a transition from a dispersed matrix morphology in 80/20 and 20/80 (PC/ABS) to cocontinuous morphologies in the intermediate blends (60/40, 50/50, and 40/60). The addition of ABS-g-MAH as a compatibilizer resulted in significant morphological refinement. Electromagnetic properties, evaluated using both X-band rectangular waveguide and broadband coaxial airline techniques, as well as electrical conductivity, were found to be strongly influenced by the varying morphologies. The nanocomposite PC/ABS/ABS-g-MAH with a thickness of 3.0 mm presented a Reflection Loss (RL) of −29.4 dB at 9.44 GHz, with a bandwidth of 3 GHz. Across the broadband spectrum, RL values below −10 dB were observed, including at lower frequencies around 3.70 GHz. These findings suggest that morphological tuning of the polymer matrix offers a promising pathway for optimizing microwave absorption in hybrid nanocomposites.

{"title":"Tuning the Morphology of Immiscible Polymer Blend-Based Hybrid Nanocomposite for Improving Microwave Absorption Response","authors":"Erick Gabriel Ribeiro dos Anjos*,&nbsp;Tayra Rodrigues Brazil,&nbsp;Mirabel Cerqueira Rezende,&nbsp;Juliano Marini,&nbsp;Uttandaraman Sundararaj,&nbsp;Luiz Antonio Pessan and Fabio Roberto Passador*,&nbsp;","doi":"10.1021/acspolymersau.4c0008710.1021/acspolymersau.4c00087","DOIUrl":"https://doi.org/10.1021/acspolymersau.4c00087https://doi.org/10.1021/acspolymersau.4c00087","url":null,"abstract":"<p >Polymer-blend-based nanocomposites incorporating carbon nanomaterials hold significant potential for microwave absorption materials (MAM) applications. This study investigates the microwave absorption response of hybrid nanocomposites composed of multiwalled carbon nanotubes (MWCNT) and nanographite, prepared using industrial-like melt-mixing masterbatch strategies in a polycarbonate/acrylonitrile-butadiene-styrene copolymer (PC/ABS) blend matrix with varying blend ratios (100/0, 80/20, 60/40, 50/50, 40/60, 20/80, and 0/100) and a constant filler content (2 wt % MWCNT and 2 wt % nanographite). Furthermore, the PC/ABS (40/60) blend-based nanocomposite was prepared with the addition of a compatibilizer, 5 wt % of maleic anhydride grafted ABS (ABS-<i>g</i>-MAH), to verify possible changes in morphology. Morphology, rheology, mechanical, electrical, and electromagnetic properties were correlated. From a morphological perspective, a preferential distribution of MWCNTs within the PC phase was observed, with the different blend ratios leading to a transition from a dispersed matrix morphology in 80/20 and 20/80 (PC/ABS) to cocontinuous morphologies in the intermediate blends (60/40, 50/50, and 40/60). The addition of ABS-<i>g</i>-MAH as a compatibilizer resulted in significant morphological refinement. Electromagnetic properties, evaluated using both X-band rectangular waveguide and broadband coaxial airline techniques, as well as electrical conductivity, were found to be strongly influenced by the varying morphologies. The nanocomposite PC/ABS/ABS-<i>g</i>-MAH with a thickness of 3.0 mm presented a Reflection Loss (RL) of −29.4 dB at 9.44 GHz, with a bandwidth of 3 GHz. Across the broadband spectrum, RL values below −10 dB were observed, including at lower frequencies around 3.70 GHz. These findings suggest that morphological tuning of the polymer matrix offers a promising pathway for optimizing microwave absorption in hybrid nanocomposites.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"10–25 10–25"},"PeriodicalIF":4.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the Morphology of Immiscible Polymer Blend-Based Hybrid Nanocomposite for Improving Microwave Absorption Response.
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-11-28 eCollection Date: 2025-02-12 DOI: 10.1021/acspolymersau.4c00087
Erick Gabriel Ribeiro Dos Anjos, Tayra Rodrigues Brazil, Mirabel Cerqueira Rezende, Juliano Marini, Uttandaraman Sundararaj, Luiz Antonio Pessan, Fabio Roberto Passador

Polymer-blend-based nanocomposites incorporating carbon nanomaterials hold significant potential for microwave absorption materials (MAM) applications. This study investigates the microwave absorption response of hybrid nanocomposites composed of multiwalled carbon nanotubes (MWCNT) and nanographite, prepared using industrial-like melt-mixing masterbatch strategies in a polycarbonate/acrylonitrile-butadiene-styrene copolymer (PC/ABS) blend matrix with varying blend ratios (100/0, 80/20, 60/40, 50/50, 40/60, 20/80, and 0/100) and a constant filler content (2 wt % MWCNT and 2 wt % nanographite). Furthermore, the PC/ABS (40/60) blend-based nanocomposite was prepared with the addition of a compatibilizer, 5 wt % of maleic anhydride grafted ABS (ABS-g-MAH), to verify possible changes in morphology. Morphology, rheology, mechanical, electrical, and electromagnetic properties were correlated. From a morphological perspective, a preferential distribution of MWCNTs within the PC phase was observed, with the different blend ratios leading to a transition from a dispersed matrix morphology in 80/20 and 20/80 (PC/ABS) to cocontinuous morphologies in the intermediate blends (60/40, 50/50, and 40/60). The addition of ABS-g-MAH as a compatibilizer resulted in significant morphological refinement. Electromagnetic properties, evaluated using both X-band rectangular waveguide and broadband coaxial airline techniques, as well as electrical conductivity, were found to be strongly influenced by the varying morphologies. The nanocomposite PC/ABS/ABS-g-MAH with a thickness of 3.0 mm presented a Reflection Loss (RL) of -29.4 dB at 9.44 GHz, with a bandwidth of 3 GHz. Across the broadband spectrum, RL values below -10 dB were observed, including at lower frequencies around 3.70 GHz. These findings suggest that morphological tuning of the polymer matrix offers a promising pathway for optimizing microwave absorption in hybrid nanocomposites.

{"title":"Tuning the Morphology of Immiscible Polymer Blend-Based Hybrid Nanocomposite for Improving Microwave Absorption Response.","authors":"Erick Gabriel Ribeiro Dos Anjos, Tayra Rodrigues Brazil, Mirabel Cerqueira Rezende, Juliano Marini, Uttandaraman Sundararaj, Luiz Antonio Pessan, Fabio Roberto Passador","doi":"10.1021/acspolymersau.4c00087","DOIUrl":"10.1021/acspolymersau.4c00087","url":null,"abstract":"<p><p>Polymer-blend-based nanocomposites incorporating carbon nanomaterials hold significant potential for microwave absorption materials (MAM) applications. This study investigates the microwave absorption response of hybrid nanocomposites composed of multiwalled carbon nanotubes (MWCNT) and nanographite, prepared using industrial-like melt-mixing masterbatch strategies in a polycarbonate/acrylonitrile-butadiene-styrene copolymer (PC/ABS) blend matrix with varying blend ratios (100/0, 80/20, 60/40, 50/50, 40/60, 20/80, and 0/100) and a constant filler content (2 wt % MWCNT and 2 wt % nanographite). Furthermore, the PC/ABS (40/60) blend-based nanocomposite was prepared with the addition of a compatibilizer, 5 wt % of maleic anhydride grafted ABS (ABS-<i>g</i>-MAH), to verify possible changes in morphology. Morphology, rheology, mechanical, electrical, and electromagnetic properties were correlated. From a morphological perspective, a preferential distribution of MWCNTs within the PC phase was observed, with the different blend ratios leading to a transition from a dispersed matrix morphology in 80/20 and 20/80 (PC/ABS) to cocontinuous morphologies in the intermediate blends (60/40, 50/50, and 40/60). The addition of ABS-<i>g</i>-MAH as a compatibilizer resulted in significant morphological refinement. Electromagnetic properties, evaluated using both X-band rectangular waveguide and broadband coaxial airline techniques, as well as electrical conductivity, were found to be strongly influenced by the varying morphologies. The nanocomposite PC/ABS/ABS-<i>g</i>-MAH with a thickness of 3.0 mm presented a Reflection Loss (RL) of -29.4 dB at 9.44 GHz, with a bandwidth of 3 GHz. Across the broadband spectrum, RL values below -10 dB were observed, including at lower frequencies around 3.70 GHz. These findings suggest that morphological tuning of the polymer matrix offers a promising pathway for optimizing microwave absorption in hybrid nanocomposites.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"10-25"},"PeriodicalIF":4.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting Online Spatially Resolved Dynamic Light Scattering and Flow-NMR for Automated Size Targeting of PISA-Synthesized Block Copolymer Nanoparticles.
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-11-26 eCollection Date: 2025-02-12 DOI: 10.1021/acspolymersau.4c00074
Peter M Pittaway, Kudakwashe E Chingono, Stephen T Knox, Elaine Martin, Richard A Bourne, Olivier J Cayre, Nikil Kapur, Jonathan Booth, Robin Capomaccio, Nicholas Pedge, Nicholas J Warren

Programmable synthesis of polymer nanoparticles prepared by polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain-transfer (RAFT) dispersion polymerization with specified diameter is achieved in an automated flow-reactor platform. Real-time particle size and monomer conversion is obtained via inline spatially resolved dynamic light scattering (SRDLS) and benchtop nuclear magnetic resonance (NMR) instrumentation. An initial training experiment generated a relationship between copolymer block length and particle size for the synthesis of poly(N,N-dimethylacrylamide)-b-poly(diacetone acrylamide) (PDMAm-b-PDAAm) nanoparticles. The training data was used to target the product compositions required for synthesis of nanoparticles with defined diameters of 50, 60, 70, and 80 nm, while inline NMR spectroscopy enabled rapid acquisition of kinetic data to support their scale-up. NMR and SRDLS were used during the continuous manufacture of the targeted products to monitor product consistency while an automated sampling system collected practically useful quantities of the targeted products, thus outlining the potential of the platform as a tool for discovery, development, and manufacture of polymeric nanoparticles.

{"title":"Exploiting Online Spatially Resolved Dynamic Light Scattering and Flow-NMR for Automated Size Targeting of PISA-Synthesized Block Copolymer Nanoparticles.","authors":"Peter M Pittaway, Kudakwashe E Chingono, Stephen T Knox, Elaine Martin, Richard A Bourne, Olivier J Cayre, Nikil Kapur, Jonathan Booth, Robin Capomaccio, Nicholas Pedge, Nicholas J Warren","doi":"10.1021/acspolymersau.4c00074","DOIUrl":"10.1021/acspolymersau.4c00074","url":null,"abstract":"<p><p>Programmable synthesis of polymer nanoparticles prepared by polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain-transfer (RAFT) dispersion polymerization with specified diameter is achieved in an automated flow-reactor platform. Real-time particle size and monomer conversion is obtained via inline spatially resolved dynamic light scattering (SRDLS) and benchtop nuclear magnetic resonance (NMR) instrumentation. An initial training experiment generated a relationship between copolymer block length and particle size for the synthesis of poly(<i>N</i>,<i>N</i>-dimethylacrylamide)-<i>b</i>-poly(diacetone acrylamide) (PDMAm-<i>b</i>-PDAAm) nanoparticles. The training data was used to target the product compositions required for synthesis of nanoparticles with defined diameters of 50, 60, 70, and 80 nm, while inline NMR spectroscopy enabled rapid acquisition of kinetic data to support their scale-up. NMR and SRDLS were used during the continuous manufacture of the targeted products to monitor product consistency while an automated sampling system collected practically useful quantities of the targeted products, thus outlining the potential of the platform as a tool for discovery, development, and manufacture of polymeric nanoparticles.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 1","pages":"1-9"},"PeriodicalIF":4.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactivity Ratios of Biobased Dialkyl Itaconate Radical Polymerizations Derived from In-Line NMR Spectroscopy and Size-Exclusion Chromatography 生物基衣康酸二烷基自由基聚合的反应性比来源于在线核磁共振光谱和尺寸排除色谱
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2024-11-26 DOI: 10.1021/acspolymersau.4c0007110.1021/acspolymersau.4c00071
Marco Drache, Brunette Audree Tameno Kouanwo, Jan Christoph Namyslo, Sacha Pérocheau Arnaud, Tobias Robert and Sabine Beuermann*, 

Itaconates available from renewable resources constitute a group of monomers that are used in several types of polymerizations. Their use in free-radical polymerizations (FRPs) is still limited due to the low propagation rate coefficients resulting in low polymerization rates and the occurrence of depropagation which is responsible for limited monomer conversion. Since FRP is considered very robust with few requirements concerning monomer purity, it is still interesting to investigate how itaconate FRP may become feasible. For this reason, copolymerizations of itaconates with other monomers well-suited for FRP are considered. In particular, copolymerization with acrylates appears to be interesting because the propagation rate of these monomers is high and depropagation is not operative at common polymerization temperatures. Copolymerizations of dibutyl and dicyclohexyl itaconate with butyl acrylate were performed to determine the copolymerization reactivity ratios required for tailoring copolymer composition. To limit the number of experiments, copolymerizations were carried out until high conversion and consumption of the individual monomers was obtained from 1H NMR spectroscopy and quantitative size-exclusion chromatography.

从可再生资源中获得的itacon酸酯构成了一组单体,用于几种类型的聚合。它们在自由基聚合(FRPs)中的应用仍然受到限制,因为低增殖速率系数导致低聚合速率和发生脱增殖,这是有限的单体转化的原因。由于FRP被认为是非常坚固的,对单体纯度的要求很少,因此研究如何使其变得可行仍然很有趣。出于这个原因,考虑与其他适合FRP的单体共聚。特别是,与丙烯酸酯的共聚似乎很有趣,因为这些单体的繁殖速率很高,而在普通聚合温度下不进行反繁殖。二丁基和衣康酸二环己基与丙烯酸丁酯进行了共聚,以确定共聚反应活性比,以确定共聚物组成所需的共聚反应活性比。为了限制实验次数,进行共聚,直到通过1H NMR波谱和定量尺寸排除色谱获得单个单体的高转化率和消耗。
{"title":"Reactivity Ratios of Biobased Dialkyl Itaconate Radical Polymerizations Derived from In-Line NMR Spectroscopy and Size-Exclusion Chromatography","authors":"Marco Drache,&nbsp;Brunette Audree Tameno Kouanwo,&nbsp;Jan Christoph Namyslo,&nbsp;Sacha Pérocheau Arnaud,&nbsp;Tobias Robert and Sabine Beuermann*,&nbsp;","doi":"10.1021/acspolymersau.4c0007110.1021/acspolymersau.4c00071","DOIUrl":"https://doi.org/10.1021/acspolymersau.4c00071https://doi.org/10.1021/acspolymersau.4c00071","url":null,"abstract":"<p >Itaconates available from renewable resources constitute a group of monomers that are used in several types of polymerizations. Their use in free-radical polymerizations (FRPs) is still limited due to the low propagation rate coefficients resulting in low polymerization rates and the occurrence of depropagation which is responsible for limited monomer conversion. Since FRP is considered very robust with few requirements concerning monomer purity, it is still interesting to investigate how itaconate FRP may become feasible. For this reason, copolymerizations of itaconates with other monomers well-suited for FRP are considered. In particular, copolymerization with acrylates appears to be interesting because the propagation rate of these monomers is high and depropagation is not operative at common polymerization temperatures. Copolymerizations of dibutyl and dicyclohexyl itaconate with butyl acrylate were performed to determine the copolymerization reactivity ratios required for tailoring copolymer composition. To limit the number of experiments, copolymerizations were carried out until high conversion and consumption of the individual monomers was obtained from <sup>1</sup>H NMR spectroscopy and quantitative size-exclusion chromatography.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 6","pages":"540–549 540–549"},"PeriodicalIF":4.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.4c00071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS polymers Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1