Rebecca J Salamon, Megan C McKeon, Jiyoung Bae, Xiaoya Zhang, Wyatt G Paltzer, Kayla N Wanless, Alyssa R Schuett, Dakota J Nuttall, Stephen A Nemr, Rupa Sridharan, Youngsook Lee, Timothy J Kamp, Ahmed I Mahmoud
{"title":"LRRC10 regulates mammalian cardiomyocyte cell cycle during heart regeneration.","authors":"Rebecca J Salamon, Megan C McKeon, Jiyoung Bae, Xiaoya Zhang, Wyatt G Paltzer, Kayla N Wanless, Alyssa R Schuett, Dakota J Nuttall, Stephen A Nemr, Rupa Sridharan, Youngsook Lee, Timothy J Kamp, Ahmed I Mahmoud","doi":"10.1038/s41536-023-00316-0","DOIUrl":null,"url":null,"abstract":"<p><p>Leucine-rich repeat containing 10 (LRRC10) is a cardiomyocyte-specific protein, but its role in cardiac biology is little understood. Recently Lrrc10 was identified as required for endogenous cardiac regeneration in zebrafish; however, whether LRRC10 plays a role in mammalian heart regeneration remains unclear. In this study, we demonstrate that Lrrc10<sup>-/-</sup> knockout mice exhibit a loss of the neonatal mouse regenerative response, marked by reduced cardiomyocyte cytokinesis and increased cardiomyocyte binucleation. Interestingly, LRRC10 deletion disrupts the regenerative transcriptional landscape of the regenerating neonatal mouse heart. Remarkably, cardiac overexpression of LRRC10 restores cardiomyocyte cytokinesis, increases cardiomyocyte mononucleation, and the cardiac regenerative capacity of Lrrc10<sup>-/-</sup> mice. Our results are consistent with a model in which LRRC10 is required for cardiomyocyte cytokinesis as well as regulation of the transcriptional landscape during mammalian heart regeneration.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382521/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-023-00316-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Leucine-rich repeat containing 10 (LRRC10) is a cardiomyocyte-specific protein, but its role in cardiac biology is little understood. Recently Lrrc10 was identified as required for endogenous cardiac regeneration in zebrafish; however, whether LRRC10 plays a role in mammalian heart regeneration remains unclear. In this study, we demonstrate that Lrrc10-/- knockout mice exhibit a loss of the neonatal mouse regenerative response, marked by reduced cardiomyocyte cytokinesis and increased cardiomyocyte binucleation. Interestingly, LRRC10 deletion disrupts the regenerative transcriptional landscape of the regenerating neonatal mouse heart. Remarkably, cardiac overexpression of LRRC10 restores cardiomyocyte cytokinesis, increases cardiomyocyte mononucleation, and the cardiac regenerative capacity of Lrrc10-/- mice. Our results are consistent with a model in which LRRC10 is required for cardiomyocyte cytokinesis as well as regulation of the transcriptional landscape during mammalian heart regeneration.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.