首页 > 最新文献

npj Regenerative Medicine最新文献

英文 中文
Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-03-01 DOI: 10.1038/s41536-025-00395-1
Areli Rodriguez Ayala, George Christ, Donald Griffin

Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.

{"title":"Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss.","authors":"Areli Rodriguez Ayala, George Christ, Donald Griffin","doi":"10.1038/s41536-025-00395-1","DOIUrl":"10.1038/s41536-025-00395-1","url":null,"abstract":"<p><p>Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"12"},"PeriodicalIF":6.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digit regeneration is expedited in LG/J healer mice compared to SM/J non-healer mice.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-02-15 DOI: 10.1038/s41536-025-00399-x
Feini Qu, Kristin L Lenz, Gwendalyn L Krekeler, Xin Duan, Muhammad Farooq Rai, Farshid Guilak

Limb loss resulting from disease or trauma affects an estimated 185,000 Americans annually, significantly reducing their quality of life. Consequently, successful attempts to regrow missing appendages could substantially improve the prognosis for amputees. In mice, the digit tip spontaneously regenerates resected tissues following distal amputation, whereas this capacity diminishes at more proximal levels after amputation. Moreover, regenerative potential is influenced by genetic variations among inbred mouse strains: LG/J (healer) mice exhibit superior reparative potential compared to SM/J (non-healer) mice. This study investigated the response to various levels of digit amputation in these mice to determine whether this strain-dependent healing response translates to the regeneration of complex tissues. Evaluation of skeletal regrowth, cell proliferation, and differential gene and protein expression reveals that digit regeneration is more robust in LG/J mice compared to SM/J mice at multiple amputation levels, suggesting that the regenerative capacity of composite tissues is genetically heritable in mice.

{"title":"Digit regeneration is expedited in LG/J healer mice compared to SM/J non-healer mice.","authors":"Feini Qu, Kristin L Lenz, Gwendalyn L Krekeler, Xin Duan, Muhammad Farooq Rai, Farshid Guilak","doi":"10.1038/s41536-025-00399-x","DOIUrl":"10.1038/s41536-025-00399-x","url":null,"abstract":"<p><p>Limb loss resulting from disease or trauma affects an estimated 185,000 Americans annually, significantly reducing their quality of life. Consequently, successful attempts to regrow missing appendages could substantially improve the prognosis for amputees. In mice, the digit tip spontaneously regenerates resected tissues following distal amputation, whereas this capacity diminishes at more proximal levels after amputation. Moreover, regenerative potential is influenced by genetic variations among inbred mouse strains: LG/J (healer) mice exhibit superior reparative potential compared to SM/J (non-healer) mice. This study investigated the response to various levels of digit amputation in these mice to determine whether this strain-dependent healing response translates to the regeneration of complex tissues. Evaluation of skeletal regrowth, cell proliferation, and differential gene and protein expression reveals that digit regeneration is more robust in LG/J mice compared to SM/J mice at multiple amputation levels, suggesting that the regenerative capacity of composite tissues is genetically heritable in mice.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"11"},"PeriodicalIF":6.4,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK).
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-02-14 DOI: 10.1038/s41536-025-00396-0
Sarah Barbara Zwingelberg, Gizem Karabiyik, Paul Gehle, Melanie von Brandenstein, Sabina Eibichova, Christian Lotz, Florian Groeber-Becker, Daniel Kampik, Ula Jurkunas, Gerd Geerling, Gregor Lang

Corneal diseases are the third leading cause of blindness worldwide. Descemet's Membrane Endothelial Keratoplasty (DMEK) is the preferred surgical technique for treating corneal endothelial disorders, relying heavily on high-quality donor tissue. However, the scarcity of suitable donor tissue and the sensitivity of endothelial cells remain significant challenges. This review explores the current state of DMEK, focusing on advancements in tissue engineering as a promising solution to improve outcomes and address donor limitations.

角膜疾病是全球第三大致盲原因。戴斯麦特膜内皮角膜成形术(DMEK)是治疗角膜内皮疾病的首选手术技术,主要依赖于高质量的供体组织。然而,合适供体组织的稀缺性和内皮细胞的敏感性仍是重大挑战。这篇综述探讨了 DMEK 的现状,重点关注组织工程学的进展,它是一种很有前景的解决方案,可改善疗效并解决供体限制问题。
{"title":"Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK).","authors":"Sarah Barbara Zwingelberg, Gizem Karabiyik, Paul Gehle, Melanie von Brandenstein, Sabina Eibichova, Christian Lotz, Florian Groeber-Becker, Daniel Kampik, Ula Jurkunas, Gerd Geerling, Gregor Lang","doi":"10.1038/s41536-025-00396-0","DOIUrl":"10.1038/s41536-025-00396-0","url":null,"abstract":"<p><p>Corneal diseases are the third leading cause of blindness worldwide. Descemet's Membrane Endothelial Keratoplasty (DMEK) is the preferred surgical technique for treating corneal endothelial disorders, relying heavily on high-quality donor tissue. However, the scarcity of suitable donor tissue and the sensitivity of endothelial cells remain significant challenges. This review explores the current state of DMEK, focusing on advancements in tissue engineering as a promising solution to improve outcomes and address donor limitations.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"10"},"PeriodicalIF":6.4,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of injury size on local and systemic immune cell dynamics in volumetric muscle loss.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-02-13 DOI: 10.1038/s41536-025-00397-z
Ricardo Whitaker, Samuel Sung, Tina Tylek, Gregory E Risser, Erin M O'Brien, Phoebe Ellin Chua, Thomas Li, Ryan J Petrie, Lin Han, Benjamin I Binder-Markey, Kara L Spiller

We took a systems approach to the analysis of macrophage phenotype in regenerative and fibrotic volumetric muscle loss outcomes in mice together with analysis of systemic inflammation and of other leukocytes in the muscle, spleen, and bone marrow. Differences in expression of macrophage phenotype markers occurred as early as day 1, persisted to at least day 28, and were associated with increased numbers of leukocytes in the muscle and bone marrow, increased pro-inflammatory marker expression in splenic macrophages, and changes in the levels of pro-inflammatory cytokines in the blood. The most prominent differences were in muscle neutrophils, which were much more abundant in fibrotic outcomes compared to regenerative outcomes at day 1 after injury. However, neutrophil depletion had little to no effect on macrophage phenotype or on muscle repair outcomes. Together, these results suggest that the entire system of immune cell interactions must be considered to improve muscle repair outcomes.

{"title":"Effects of injury size on local and systemic immune cell dynamics in volumetric muscle loss.","authors":"Ricardo Whitaker, Samuel Sung, Tina Tylek, Gregory E Risser, Erin M O'Brien, Phoebe Ellin Chua, Thomas Li, Ryan J Petrie, Lin Han, Benjamin I Binder-Markey, Kara L Spiller","doi":"10.1038/s41536-025-00397-z","DOIUrl":"10.1038/s41536-025-00397-z","url":null,"abstract":"<p><p>We took a systems approach to the analysis of macrophage phenotype in regenerative and fibrotic volumetric muscle loss outcomes in mice together with analysis of systemic inflammation and of other leukocytes in the muscle, spleen, and bone marrow. Differences in expression of macrophage phenotype markers occurred as early as day 1, persisted to at least day 28, and were associated with increased numbers of leukocytes in the muscle and bone marrow, increased pro-inflammatory marker expression in splenic macrophages, and changes in the levels of pro-inflammatory cytokines in the blood. The most prominent differences were in muscle neutrophils, which were much more abundant in fibrotic outcomes compared to regenerative outcomes at day 1 after injury. However, neutrophil depletion had little to no effect on macrophage phenotype or on muscle repair outcomes. Together, these results suggest that the entire system of immune cell interactions must be considered to improve muscle repair outcomes.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"9"},"PeriodicalIF":6.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic profiling of iPSC and tissue-derived MSC secretomes reveal a global signature of inflammatory licensing.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-02-04 DOI: 10.1038/s41536-024-00382-y
Margeaux Hodgson-Garms, Matthew J Moore, Mikaël M Martino, Kilian Kelly, Jessica E Frith

Much of the therapeutic potential of mesenchymal stromal cells (MSCs) is underpinned by their secretome which varies significantly with source, donor and microenvironmental cues. Understanding these differences is essential to define the mechanisms of MSC-based tissue repair and optimise cell therapies. This study analysed the secretomes of bone-marrow (BM.MSCs), umbilical-cord (UC.MSCs), adipose-tissue (AT.MSCs) and clinical/commercial-grade induced pluripotent stem cell-derived MSCs (iMSCs), under resting and inflammatory licenced conditions. iMSCs recapitulated the inflammatory licensing process, validating their comparability to tissue-derived MSCs. Overall, resting secretomes were defined by extracellular matrix (ECM) and pro-regenerative proteins, while licensed secretomes were enriched in chemotactic and immunomodulatory proteins. iMSC and UC.MSC secretomes contained proteins indicating proliferative potential and telomere maintenance, whereas adult tissue-derived secretomes contained fibrotic and ECM-related proteins. The data and findings from this study will inform the optimum MSC source for particular applications and underpin further development of MSC therapies.

{"title":"Proteomic profiling of iPSC and tissue-derived MSC secretomes reveal a global signature of inflammatory licensing.","authors":"Margeaux Hodgson-Garms, Matthew J Moore, Mikaël M Martino, Kilian Kelly, Jessica E Frith","doi":"10.1038/s41536-024-00382-y","DOIUrl":"10.1038/s41536-024-00382-y","url":null,"abstract":"<p><p>Much of the therapeutic potential of mesenchymal stromal cells (MSCs) is underpinned by their secretome which varies significantly with source, donor and microenvironmental cues. Understanding these differences is essential to define the mechanisms of MSC-based tissue repair and optimise cell therapies. This study analysed the secretomes of bone-marrow (BM.MSCs), umbilical-cord (UC.MSCs), adipose-tissue (AT.MSCs) and clinical/commercial-grade induced pluripotent stem cell-derived MSCs (iMSCs), under resting and inflammatory licenced conditions. iMSCs recapitulated the inflammatory licensing process, validating their comparability to tissue-derived MSCs. Overall, resting secretomes were defined by extracellular matrix (ECM) and pro-regenerative proteins, while licensed secretomes were enriched in chemotactic and immunomodulatory proteins. iMSC and UC.MSC secretomes contained proteins indicating proliferative potential and telomere maintenance, whereas adult tissue-derived secretomes contained fibrotic and ECM-related proteins. The data and findings from this study will inform the optimum MSC source for particular applications and underpin further development of MSC therapies.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"7"},"PeriodicalIF":6.4,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-orthogonal crosslinking and hyaluronan facilitate transparent healing after treatment of deep corneal injuries with in situ-forming hydrogels.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-02-04 DOI: 10.1038/s41536-024-00385-9
Fang Chen, Uiyoung Han, Thitima Wungcharoen, Youngyoon Amy Seo, Peter Le, Li Jiang, Nae-Won Kang, Euisun Song, Kyeongwoo Jang, David Mundy, Gabriella Maria Fernandes-Cunha, Sarah Heilshorn, David Myung

Corneal transplantation is the primary treatment for corneal blindness, affecting millions globally. However, challenges like donor scarcity and surgical complications remain. Recently, in situ-forming corneal stroma substitutes have emerged, offering potential solutions to these limitations. These substitutes enable liquid-to-hydrogel formation in situ, eliminating sutures and reducing complications. Here we performed a direct, side-by-side comparison of a composite hyaluronan-collagen (HA-Col) hydrogel crosslinked by either photochemistry or bio-orthogonal chemistry to ascertain the impact of reaction specificity on corneal wound healing. Testing in rodent and rabbit models suggests that composite HA-Col gels crosslinked by bio-orthogonal chemistry results in more rapid and optically favorable wound healing compared to the same composition crosslinked by photochemistry as well as bio-orthogonally crosslinked collagen alone. These findings underscore biochemical parameters that may be important to the success of crosslinked, in situ-forming hydrogels as an alternative to corneal transplantation, with the potential for expanded access to treatment and improved outcomes.

{"title":"Bio-orthogonal crosslinking and hyaluronan facilitate transparent healing after treatment of deep corneal injuries with in situ-forming hydrogels.","authors":"Fang Chen, Uiyoung Han, Thitima Wungcharoen, Youngyoon Amy Seo, Peter Le, Li Jiang, Nae-Won Kang, Euisun Song, Kyeongwoo Jang, David Mundy, Gabriella Maria Fernandes-Cunha, Sarah Heilshorn, David Myung","doi":"10.1038/s41536-024-00385-9","DOIUrl":"10.1038/s41536-024-00385-9","url":null,"abstract":"<p><p>Corneal transplantation is the primary treatment for corneal blindness, affecting millions globally. However, challenges like donor scarcity and surgical complications remain. Recently, in situ-forming corneal stroma substitutes have emerged, offering potential solutions to these limitations. These substitutes enable liquid-to-hydrogel formation in situ, eliminating sutures and reducing complications. Here we performed a direct, side-by-side comparison of a composite hyaluronan-collagen (HA-Col) hydrogel crosslinked by either photochemistry or bio-orthogonal chemistry to ascertain the impact of reaction specificity on corneal wound healing. Testing in rodent and rabbit models suggests that composite HA-Col gels crosslinked by bio-orthogonal chemistry results in more rapid and optically favorable wound healing compared to the same composition crosslinked by photochemistry as well as bio-orthogonally crosslinked collagen alone. These findings underscore biochemical parameters that may be important to the success of crosslinked, in situ-forming hydrogels as an alternative to corneal transplantation, with the potential for expanded access to treatment and improved outcomes.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"8"},"PeriodicalIF":6.4,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryopreserved human alternatively activated macrophages promote resolution of acetaminophen-induced liver injury in mouse.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-01-22 DOI: 10.1038/s41536-025-00393-3
Maria Elena Candela, Melisande Addison, Rhona Aird, Tak-Yung Man, Jennifer A Cartwright, Candice Ashmore-Harris, Alastair M Kilpatrick, Philip J Starkey Lewis, Anna Drape, Mark Barnett, Donna Mitchell, Colin McLean, Neil McGowan, Marc Turner, James W Dear, Stuart J Forbes

Acute liver failure is a rapidly progressing, life-threatening condition most commonly caused by an overdose of acetaminophen (paracetamol). The antidote, N-acetylcysteine (NAC), has limited efficacy when liver injury is established. If acute liver damage is severe, liver failure can rapidly develop with associated high mortality rates. We have previously demonstrated that alternatively, activated macrophages are a potential therapeutic option to reverse acute liver injury in pre-clinical models. In this paper, we present data using cryopreserved human alternatively activated macrophages (hAAMs)-which represent a potential, rapidly available treatment suitable for use in the acute setting. In a mouse model of APAP-induced injury, peripherally injected cryopreserved hAAMs reduced liver necrosis, modulated inflammatory responses, and enhanced liver regeneration. hAAMs were effective even when administered after the therapeutic window for NAC. This cell therapy approach represents a potential treatment for APAP overdose when NAC is ineffective because liver injury is established.

{"title":"Cryopreserved human alternatively activated macrophages promote resolution of acetaminophen-induced liver injury in mouse.","authors":"Maria Elena Candela, Melisande Addison, Rhona Aird, Tak-Yung Man, Jennifer A Cartwright, Candice Ashmore-Harris, Alastair M Kilpatrick, Philip J Starkey Lewis, Anna Drape, Mark Barnett, Donna Mitchell, Colin McLean, Neil McGowan, Marc Turner, James W Dear, Stuart J Forbes","doi":"10.1038/s41536-025-00393-3","DOIUrl":"10.1038/s41536-025-00393-3","url":null,"abstract":"<p><p>Acute liver failure is a rapidly progressing, life-threatening condition most commonly caused by an overdose of acetaminophen (paracetamol). The antidote, N-acetylcysteine (NAC), has limited efficacy when liver injury is established. If acute liver damage is severe, liver failure can rapidly develop with associated high mortality rates. We have previously demonstrated that alternatively, activated macrophages are a potential therapeutic option to reverse acute liver injury in pre-clinical models. In this paper, we present data using cryopreserved human alternatively activated macrophages (hAAMs)-which represent a potential, rapidly available treatment suitable for use in the acute setting. In a mouse model of APAP-induced injury, peripherally injected cryopreserved hAAMs reduced liver necrosis, modulated inflammatory responses, and enhanced liver regeneration. hAAMs were effective even when administered after the therapeutic window for NAC. This cell therapy approach represents a potential treatment for APAP overdose when NAC is ineffective because liver injury is established.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"5"},"PeriodicalIF":6.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction.
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-01-22 DOI: 10.1038/s41536-025-00394-2
Axelle Bois, Catarina Grandela, James Gallant, Christine Mummery, Philippe Menasché

Myocardial infarction (MI) causes the loss of millions of cardiomyocytes, and current treatments do not address this root issue. New therapies focus on stimulating cardiomyocyte division in the adult heart, inspired by the regenerative capacities of lower vertebrates and neonatal mice. This review explores strategies for heart regeneration, offers insights into cardiomyocyte proliferation, evaluates in vivo models, and discusses integrating in vitro human cardiac models to advance cardiac regeneration research.

{"title":"Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction.","authors":"Axelle Bois, Catarina Grandela, James Gallant, Christine Mummery, Philippe Menasché","doi":"10.1038/s41536-025-00394-2","DOIUrl":"10.1038/s41536-025-00394-2","url":null,"abstract":"<p><p>Myocardial infarction (MI) causes the loss of millions of cardiomyocytes, and current treatments do not address this root issue. New therapies focus on stimulating cardiomyocyte division in the adult heart, inspired by the regenerative capacities of lower vertebrates and neonatal mice. This review explores strategies for heart regeneration, offers insights into cardiomyocyte proliferation, evaluates in vivo models, and discusses integrating in vitro human cardiac models to advance cardiac regeneration research.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"6"},"PeriodicalIF":6.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic factors associated with antler growth promote complete wound healing. 与鹿角生长有关的全身因素促进伤口完全愈合。
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-01-21 DOI: 10.1038/s41536-025-00391-5
Qianqian Guo, Guokun Zhang, Jing Ren, Jiping Li, Zhen Wang, Hengxing Ba, Zihao Ye, Ying Wang, Junjun Zheng, Chunyi Li

Deer antlers are the only mammalian appendages that can fully regenerate from periosteum of pedicles (PP). This regeneration process starts from regenerative healing of wounds. Removal of PP abolishes antler regeneration, however, the regenerative cutaneous wound healing proceeds, indicating that some factors in the circulation contribute to this healing. In this study, we produced a wound in the scalp of deer either in antler regeneration period (ARP) (n = 3) or in non-ARP (n = 3). Results showed full regeneration took place only when the wound was created during ARP. Interestingly, topical application of systemic factors from ARP (n = 9) promoted regenerative wound healing in rats. Comparative proteomics analysis (n = 3) revealed that PRG4 and IGF-1 were high during ARP, and topical application of PRG4 + IGF-1 promoted restoration in rat FTE wounds. We believe that, ultimately, incorporating systemic factors into advanced wound care modalities could offer new opportunities for regenerative healing in the clinical setting.

鹿角是哺乳动物中唯一能完全由蒂骨膜再生的附属物。这种再生过程始于伤口的再生愈合。然而,再生皮肤伤口愈合继续进行,表明循环中的某些因素有助于这种愈合。在这项研究中,我们在鹿角再生期(n = 3)和非鹿角再生期(n = 3)的鹿头皮上制造了一个伤口。结果表明,只有在ARP过程中创面才会发生完全再生。有趣的是,局部应用来自ARP的系统性因子(n = 9)促进了大鼠的再生伤口愈合。比较蛋白质组学分析(n = 3)显示,ARP期间PRG4和IGF-1水平较高,局部应用PRG4 + IGF-1促进大鼠FTE伤口修复。我们相信,最终,将系统因素纳入先进的伤口护理模式可以为临床环境中的再生愈合提供新的机会。
{"title":"Systemic factors associated with antler growth promote complete wound healing.","authors":"Qianqian Guo, Guokun Zhang, Jing Ren, Jiping Li, Zhen Wang, Hengxing Ba, Zihao Ye, Ying Wang, Junjun Zheng, Chunyi Li","doi":"10.1038/s41536-025-00391-5","DOIUrl":"10.1038/s41536-025-00391-5","url":null,"abstract":"<p><p>Deer antlers are the only mammalian appendages that can fully regenerate from periosteum of pedicles (PP). This regeneration process starts from regenerative healing of wounds. Removal of PP abolishes antler regeneration, however, the regenerative cutaneous wound healing proceeds, indicating that some factors in the circulation contribute to this healing. In this study, we produced a wound in the scalp of deer either in antler regeneration period (ARP) (n = 3) or in non-ARP (n = 3). Results showed full regeneration took place only when the wound was created during ARP. Interestingly, topical application of systemic factors from ARP (n = 9) promoted regenerative wound healing in rats. Comparative proteomics analysis (n = 3) revealed that PRG4 and IGF-1 were high during ARP, and topical application of PRG4 + IGF-1 promoted restoration in rat FTE wounds. We believe that, ultimately, incorporating systemic factors into advanced wound care modalities could offer new opportunities for regenerative healing in the clinical setting.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"4"},"PeriodicalIF":6.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hedgehog signaling directs cell differentiation and plays a critical role in tendon enthesis healing. Hedgehog信号传导指导细胞分化并在肌腱末端愈合中发挥关键作用。
IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2025-01-20 DOI: 10.1038/s41536-025-00392-4
Fei Fang, Matthew Casserly, Julia Robbins, Stavros Thomopoulos

A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair. This study revealed cell-cell communication within the Hh-lineage cell population. To further characterize the role of Hh signaling, we used mouse models to activate and inactivate the Hh pathway in enthesis progenitors. Activation of Hh target genes during enthesis development increased its mineralization and mechanical properties. Activation of Hh signaling at the injured mature enthesis promoted fibrocartilage formation, enhanced mineralization, and increased expression of chondrogenic and osteogenic markers, which implies that Hh signaling drives cell differentiation to regenerate the damaged enthesis. Conversely, deletion of Hh target genes impaired enthesis healing. In summary, this study revealed a new strategy for enthesis repair via activation of Hh signaling in endogenous cells.

肩袖撕裂的高流行率提出了一个主要的临床挑战。需要更好地了解内假体发育和愈合的分子机制,以开发治疗方法。我们最近发现了刺猬(Hh)谱系细胞对端接发育和修复至关重要。这项研究揭示了hh谱系细胞群体中的细胞间通讯。为了进一步表征Hh信号的作用,我们使用小鼠模型激活和灭活端胞祖细胞中的Hh通路。在内插发育过程中,Hh靶基因的激活增加了内插的矿化和机械性能。损伤成熟端部Hh信号的激活促进了纤维软骨的形成,增强了矿化,并增加了软骨和成骨标志物的表达,这表明Hh信号驱动细胞分化以再生受损的端部。相反,Hh靶基因的缺失会损害肠内端愈合。总之,本研究揭示了一种通过内源性细胞中Hh信号的激活来修复内端胞塞的新策略。
{"title":"Hedgehog signaling directs cell differentiation and plays a critical role in tendon enthesis healing.","authors":"Fei Fang, Matthew Casserly, Julia Robbins, Stavros Thomopoulos","doi":"10.1038/s41536-025-00392-4","DOIUrl":"10.1038/s41536-025-00392-4","url":null,"abstract":"<p><p>A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair. This study revealed cell-cell communication within the Hh-lineage cell population. To further characterize the role of Hh signaling, we used mouse models to activate and inactivate the Hh pathway in enthesis progenitors. Activation of Hh target genes during enthesis development increased its mineralization and mechanical properties. Activation of Hh signaling at the injured mature enthesis promoted fibrocartilage formation, enhanced mineralization, and increased expression of chondrogenic and osteogenic markers, which implies that Hh signaling drives cell differentiation to regenerate the damaged enthesis. Conversely, deletion of Hh target genes impaired enthesis healing. In summary, this study revealed a new strategy for enthesis repair via activation of Hh signaling in endogenous cells.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"3"},"PeriodicalIF":6.4,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Regenerative Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1