On the hormonal control of posterior regeneration in the annelid Platynereis dumerilii

IF 1.8 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY Journal of experimental zoology. Part B, Molecular and developmental evolution Pub Date : 2022-11-22 DOI:10.1002/jez.b.23182
Patricia Álvarez-Campos, Anabelle Planques, Loïc Bideau, Michel Vervoort, Eve Gazave
{"title":"On the hormonal control of posterior regeneration in the annelid Platynereis dumerilii","authors":"Patricia Álvarez-Campos,&nbsp;Anabelle Planques,&nbsp;Loïc Bideau,&nbsp;Michel Vervoort,&nbsp;Eve Gazave","doi":"10.1002/jez.b.23182","DOIUrl":null,"url":null,"abstract":"<p>Regeneration is the process by which many animals are able to restore lost or injured body parts. After amputation of the posterior part of its body, the annelid <i>Platynereis dumerilii</i> is able to regenerate the pygidium, the posteriormost part of its body that bears the anus, and a subterminal growth zone containing stem cells that allows the subsequent addition of new segments. The ability to regenerate their posterior part (posterior regeneration) is promoted, in juvenile worms, by a hormone produced by the brain and is lost when this hormonal activity becomes low at the time the worms undergo their sexual maturation. By characterizing posterior regeneration at the morphological and molecular levels in worms that have been decapitated, we show that the presence of the head is essential for multiple aspects of posterior regeneration, as well as for the subsequent production of new segments. We also show that methylfarnesoate, the molecule proposed to be the brain hormone, can partially rescue the posterior regeneration defects observed in decapitated worms. Our results are therefore consistent with a key role of brain hormonal activity in the control of regeneration and growth in <i>P. dumerilii</i>, and support the hypothesis of the involvement of methylfarnesoate in this control.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"340 4","pages":"298-315"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23182","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Regeneration is the process by which many animals are able to restore lost or injured body parts. After amputation of the posterior part of its body, the annelid Platynereis dumerilii is able to regenerate the pygidium, the posteriormost part of its body that bears the anus, and a subterminal growth zone containing stem cells that allows the subsequent addition of new segments. The ability to regenerate their posterior part (posterior regeneration) is promoted, in juvenile worms, by a hormone produced by the brain and is lost when this hormonal activity becomes low at the time the worms undergo their sexual maturation. By characterizing posterior regeneration at the morphological and molecular levels in worms that have been decapitated, we show that the presence of the head is essential for multiple aspects of posterior regeneration, as well as for the subsequent production of new segments. We also show that methylfarnesoate, the molecule proposed to be the brain hormone, can partially rescue the posterior regeneration defects observed in decapitated worms. Our results are therefore consistent with a key role of brain hormonal activity in the control of regeneration and growth in P. dumerilii, and support the hypothesis of the involvement of methylfarnesoate in this control.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环节动物白颈滨后肢再生的激素调控
再生是许多动物能够恢复失去或受伤的身体部位的过程。在切除其身体的后部后,环节动物Platynereis dumerilii能够再生臀肌(其身体的最后部包含肛门的部分)和含有干细胞的亚末端生长区,该区域允许随后添加新的部分。幼虫的后肢再生能力是由大脑产生的一种激素促进的,当这种激素的活性在线虫性成熟时变得较低时,这种能力就会丧失。通过在形态和分子水平上表征被斩首的蠕虫的后部再生,我们表明,头部的存在对于后部再生的多个方面以及随后产生的新节是必不可少的。我们还发现,甲基法尼酸酯,一种被认为是脑激素的分子,可以部分修复在被斩首的蠕虫中观察到的后部再生缺陷。因此,我们的结果与脑激素活动在P. dumerilii再生和生长控制中的关键作用一致,并支持甲基法尼酸酯参与这种控制的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
期刊最新文献
Issue Information From Egg to Adult: A Developmental Table of the Ant Monomorium pharaonis The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology Issue Information In the Spotlight—Postdoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1