Multi-domain knowledge graph embeddings for gene-disease association prediction.

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2023-08-14 DOI:10.1186/s13326-023-00291-x
Susana Nunes, Rita T Sousa, Catia Pesquita
{"title":"Multi-domain knowledge graph embeddings for gene-disease association prediction.","authors":"Susana Nunes, Rita T Sousa, Catia Pesquita","doi":"10.1186/s13326-023-00291-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Predicting gene-disease associations typically requires exploring diverse sources of information as well as sophisticated computational approaches. Knowledge graph embeddings can help tackle these challenges by creating representations of genes and diseases based on the scientific knowledge described in ontologies, which can then be explored by machine learning algorithms. However, state-of-the-art knowledge graph embeddings are produced over a single ontology or multiple but disconnected ones, ignoring the impact that considering multiple interconnected domains can have on complex tasks such as gene-disease association prediction.</p><p><strong>Results: </strong>We propose a novel approach to predict gene-disease associations using rich semantic representations based on knowledge graph embeddings over multiple ontologies linked by logical definitions and compound ontology mappings. The experiments showed that considering richer knowledge graphs significantly improves gene-disease prediction and that different knowledge graph embeddings methods benefit more from distinct types of semantic richness.</p><p><strong>Conclusions: </strong>This work demonstrated the potential for knowledge graph embeddings across multiple and interconnected biomedical ontologies to support gene-disease prediction. It also paved the way for considering other ontologies or tackling other tasks where multiple perspectives over the data can be beneficial. All software and data are freely available.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"11"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-023-00291-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Predicting gene-disease associations typically requires exploring diverse sources of information as well as sophisticated computational approaches. Knowledge graph embeddings can help tackle these challenges by creating representations of genes and diseases based on the scientific knowledge described in ontologies, which can then be explored by machine learning algorithms. However, state-of-the-art knowledge graph embeddings are produced over a single ontology or multiple but disconnected ones, ignoring the impact that considering multiple interconnected domains can have on complex tasks such as gene-disease association prediction.

Results: We propose a novel approach to predict gene-disease associations using rich semantic representations based on knowledge graph embeddings over multiple ontologies linked by logical definitions and compound ontology mappings. The experiments showed that considering richer knowledge graphs significantly improves gene-disease prediction and that different knowledge graph embeddings methods benefit more from distinct types of semantic richness.

Conclusions: This work demonstrated the potential for knowledge graph embeddings across multiple and interconnected biomedical ontologies to support gene-disease prediction. It also paved the way for considering other ontologies or tackling other tasks where multiple perspectives over the data can be beneficial. All software and data are freely available.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因疾病关联预测的多领域知识图谱嵌入。
背景:预测基因与疾病的关联通常需要探索不同的信息来源以及复杂的计算方法。知识图嵌入可以通过基于本体中描述的科学知识创建基因和疾病的表示来帮助解决这些挑战,然后可以通过机器学习算法进行探索。然而,最先进的知识图嵌入是在单个本体或多个但不相连的本体上产生的,忽略了考虑多个相互连接的领域可能对复杂任务(如基因-疾病关联预测)的影响。结果:我们提出了一种预测基因-疾病关联的新方法,该方法使用基于知识图嵌入的丰富语义表示,通过逻辑定义和复合本体映射连接多个本体。实验表明,考虑更丰富的知识图可以显著提高基因疾病的预测效果,不同的知识图嵌入方法受益于不同类型的语义丰富度。结论:这项工作证明了跨多个相互关联的生物医学本体的知识图谱嵌入支持基因疾病预测的潜力。它还为考虑其他本体或处理其他任务铺平了道路,在这些任务中,数据的多个透视图可能是有益的。所有软件和数据都是免费提供的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. Concretizing plan specifications as realizables within the OBO foundry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1