{"title":"Gene expression knowledge graph for patient representation and diabetes prediction.","authors":"Rita T Sousa, Heiko Paulheim","doi":"10.1186/s13326-025-00325-6","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a worldwide health issue affecting millions of people. Machine learning methods have shown promising results in improving diabetes prediction, particularly through the analysis of gene expression data. While gene expression data can provide valuable insights, challenges arise from the fact that the number of patients in expression datasets is usually limited, and the data from different datasets with different gene expressions cannot be easily combined. This work proposes a novel approach to address these challenges by integrating multiple gene expression datasets and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration, and to learn uniform patient representations for subjects contained in different incompatible datasets. Different strategies and KG embedding methods are explored to generate vector representations, serving as inputs for a classifier. Extensive experiments demonstrate the efficacy of our approach, revealing weighted F1-score improvements in diabetes prediction up to 13% when integrating multiple gene expression datasets and domain-specific knowledge about protein functions and interactions.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"16 1","pages":"2"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-025-00325-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is a worldwide health issue affecting millions of people. Machine learning methods have shown promising results in improving diabetes prediction, particularly through the analysis of gene expression data. While gene expression data can provide valuable insights, challenges arise from the fact that the number of patients in expression datasets is usually limited, and the data from different datasets with different gene expressions cannot be easily combined. This work proposes a novel approach to address these challenges by integrating multiple gene expression datasets and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration, and to learn uniform patient representations for subjects contained in different incompatible datasets. Different strategies and KG embedding methods are explored to generate vector representations, serving as inputs for a classifier. Extensive experiments demonstrate the efficacy of our approach, revealing weighted F1-score improvements in diabetes prediction up to 13% when integrating multiple gene expression datasets and domain-specific knowledge about protein functions and interactions.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.