A Deep Learning Framework for Soft Robots with Synthetic Data.

IF 6.4 2区 计算机科学 Q1 ROBOTICS Soft Robotics Pub Date : 2023-12-01 Epub Date: 2023-08-17 DOI:10.1089/soro.2022.0188
Shageenderan Sapai, Junn Yong Loo, Ze Yang Ding, Chee Pin Tan, Vishnu Monn Baskaran, Surya Girinatha Nurzaman
{"title":"A Deep Learning Framework for Soft Robots with Synthetic Data.","authors":"Shageenderan Sapai, Junn Yong Loo, Ze Yang Ding, Chee Pin Tan, Vishnu Monn Baskaran, Surya Girinatha Nurzaman","doi":"10.1089/soro.2022.0188","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation. This article introduces a data-driven learning framework based on synthetic data to circumvent the exhaustive data collection process. More specifically, we propose a novel time series generative adversarial network with a self-attention mechanism, Transformer TimeGAN (TTGAN) to precisely learn the complex dynamics of a soft robot. On top of that, the TTGAN is incorporated with a conditioning network that enables it to produce synthetic data for specific soft robot behaviors. The proposed framework is verified on a widely used pneumatic-based soft gripper as an exemplary experimental setup. Experimental results demonstrate that the TTGAN generates synthetic time series data with realistic soft robot dynamics. Critically, a combination of the synthetic and only partially available original data produces a data-driven model with estimation accuracy comparable to models obtained from using complete original data.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1224-1240"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0188","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation. This article introduces a data-driven learning framework based on synthetic data to circumvent the exhaustive data collection process. More specifically, we propose a novel time series generative adversarial network with a self-attention mechanism, Transformer TimeGAN (TTGAN) to precisely learn the complex dynamics of a soft robot. On top of that, the TTGAN is incorporated with a conditioning network that enables it to produce synthetic data for specific soft robot behaviors. The proposed framework is verified on a widely used pneumatic-based soft gripper as an exemplary experimental setup. Experimental results demonstrate that the TTGAN generates synthetic time series data with realistic soft robot dynamics. Critically, a combination of the synthetic and only partially available original data produces a data-driven model with estimation accuracy comparable to models obtained from using complete original data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于合成数据的软机器人深度学习框架。
基于深度神经网络的数据驱动方法在软体机器人的精确建模方面显示出良好的效果。然而,深度神经网络模型依赖于大量的数据来发现软机器人固有的复杂和非线性表征。因此,虽然这并不总是可能的,但数据获取、标记和注释需要大量的工作。本文介绍了一个基于合成数据的数据驱动学习框架,以规避详尽的数据收集过程。更具体地说,我们提出了一种具有自注意机制的新型时间序列生成对抗网络Transformer TimeGAN (TTGAN)来精确学习软机器人的复杂动力学。最重要的是,TTGAN与一个调节网络相结合,使其能够生成特定软机器人行为的合成数据。该框架作为示例性实验装置在一个广泛使用的气动软夹持器上进行了验证。实验结果表明,TTGAN生成的合成时间序列数据具有真实的软机器人动力学特征。关键的是,将合成的原始数据与部分可用的原始数据相结合,产生的数据驱动模型的估计精度与使用完整原始数据获得的模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
期刊最新文献
A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva. YoMo: Yoshimura Continuum Manipulator for MR Environment. Soft-Rigid Hybrid Revolute and Prismatic Joints Using Multilayered Bellow-Type Soft Pneumatic Actuators: Design, Characterization, and Its Application as Soft-Rigid Hybrid Gripper. Soft Electromagnetic Sliding Actuators for Highly Compliant Planar Motions Using Microfluidic Conductive Coil Array. Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1