Shageenderan Sapai, Junn Yong Loo, Ze Yang Ding, Chee Pin Tan, Vishnu Monn Baskaran, Surya Girinatha Nurzaman
{"title":"A Deep Learning Framework for Soft Robots with Synthetic Data.","authors":"Shageenderan Sapai, Junn Yong Loo, Ze Yang Ding, Chee Pin Tan, Vishnu Monn Baskaran, Surya Girinatha Nurzaman","doi":"10.1089/soro.2022.0188","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation. This article introduces a data-driven learning framework based on synthetic data to circumvent the exhaustive data collection process. More specifically, we propose a novel time series generative adversarial network with a self-attention mechanism, Transformer TimeGAN (TTGAN) to precisely learn the complex dynamics of a soft robot. On top of that, the TTGAN is incorporated with a conditioning network that enables it to produce synthetic data for specific soft robot behaviors. The proposed framework is verified on a widely used pneumatic-based soft gripper as an exemplary experimental setup. Experimental results demonstrate that the TTGAN generates synthetic time series data with realistic soft robot dynamics. Critically, a combination of the synthetic and only partially available original data produces a data-driven model with estimation accuracy comparable to models obtained from using complete original data.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1224-1240"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0188","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation. This article introduces a data-driven learning framework based on synthetic data to circumvent the exhaustive data collection process. More specifically, we propose a novel time series generative adversarial network with a self-attention mechanism, Transformer TimeGAN (TTGAN) to precisely learn the complex dynamics of a soft robot. On top of that, the TTGAN is incorporated with a conditioning network that enables it to produce synthetic data for specific soft robot behaviors. The proposed framework is verified on a widely used pneumatic-based soft gripper as an exemplary experimental setup. Experimental results demonstrate that the TTGAN generates synthetic time series data with realistic soft robot dynamics. Critically, a combination of the synthetic and only partially available original data produces a data-driven model with estimation accuracy comparable to models obtained from using complete original data.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.