Jingyue Xi, Sung Rye Park, Jun Hee Lee, Hyun Min Kang
{"title":"SiftCell: A robust framework to detect and isolate cell-containing droplets from single-cell RNA sequence reads.","authors":"Jingyue Xi, Sung Rye Park, Jun Hee Lee, Hyun Min Kang","doi":"10.1016/j.cels.2023.06.002","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) massively profiles transcriptomes of individual cells encapsulated in barcoded droplets in parallel. However, in real-world scRNA-seq data, many barcoded droplets do not contain cells, but instead, they capture a fraction of ambient RNAs released from damaged or lysed cells. A typical first step to analyze scRNA-seq data is to filter out cell-free droplets and isolate cell-containing droplets, but distinguishing them is often challenging; incorrect filtering may mislead the downstream analysis substantially. We propose SiftCell, a suite of software tools to identify and visualize cell-containing and cell-free droplets in manifold space via randomization (SiftCell-Shuffle) to classify between the two types of droplets (SiftCell-Boost) and to quantify the contribution of ambient RNAs for each droplet (SiftCell-Mix). By applying our method to datasets obtained by various single-cell platforms, we show that SiftCell provides a streamlined way to perform upstream quality control of scRNA-seq, which is more comprehensive and accurate than existing methods.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 7","pages":"620-628.e3"},"PeriodicalIF":9.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.06.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNA-seq) massively profiles transcriptomes of individual cells encapsulated in barcoded droplets in parallel. However, in real-world scRNA-seq data, many barcoded droplets do not contain cells, but instead, they capture a fraction of ambient RNAs released from damaged or lysed cells. A typical first step to analyze scRNA-seq data is to filter out cell-free droplets and isolate cell-containing droplets, but distinguishing them is often challenging; incorrect filtering may mislead the downstream analysis substantially. We propose SiftCell, a suite of software tools to identify and visualize cell-containing and cell-free droplets in manifold space via randomization (SiftCell-Shuffle) to classify between the two types of droplets (SiftCell-Boost) and to quantify the contribution of ambient RNAs for each droplet (SiftCell-Mix). By applying our method to datasets obtained by various single-cell platforms, we show that SiftCell provides a streamlined way to perform upstream quality control of scRNA-seq, which is more comprehensive and accurate than existing methods.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.