Gildardo Rivera, Alonzo González-González, Citlali Vázquez, Rusely Encalada, Emma Saavedra, Lenci K Vázquez-Jiménez, Eyra Ortiz-Pérez, Maria Bolognesi
{"title":"Phenothiazine-based virtual screening, molecular docking, and molecular dynamics of new trypanothione reductase inhibitors of Trypanosoma cruzi.","authors":"Gildardo Rivera, Alonzo González-González, Citlali Vázquez, Rusely Encalada, Emma Saavedra, Lenci K Vázquez-Jiménez, Eyra Ortiz-Pérez, Maria Bolognesi","doi":"10.1002/minf.202300069","DOIUrl":null,"url":null,"abstract":"<p><p>Phenothiazine derivatives can unselectively inhibit the trypanothione-dependent antioxidant system enzyme trypanothione reductase (TR). A virtual screening of 2163 phenothiazine derivatives from the ZINC15 and PubChem databases docked on the active site of T. cruzi TR showed that 285 compounds have higher affinity than the natural ligand trypanothione disulfide. 244 compounds showed higher affinity toward the parasite's enzyme than to its human homolog glutathione reductase. Protein-ligand interaction profiling predicted that the main interactions for the top scored compounds were with residues important for trypanothione disulfide binding: Phe396, Pro398, Leu399, His461, Glu466, and Glu467, particularly His461, which participates in catalysis. Two compounds with the desired profiles, ZINC1033681 (Zn_C687) and ZINC10213096 (Zn_C216), decreased parasite growth by 20 % and 50 %, respectively. They behaved as mixed-type inhibitors of recombinant TR, with Ki values of 59 and 47 μM, respectively. This study provides a further understanding of the potential of phenothiazine derivatives as TR inhibitors.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e2300069"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phenothiazine derivatives can unselectively inhibit the trypanothione-dependent antioxidant system enzyme trypanothione reductase (TR). A virtual screening of 2163 phenothiazine derivatives from the ZINC15 and PubChem databases docked on the active site of T. cruzi TR showed that 285 compounds have higher affinity than the natural ligand trypanothione disulfide. 244 compounds showed higher affinity toward the parasite's enzyme than to its human homolog glutathione reductase. Protein-ligand interaction profiling predicted that the main interactions for the top scored compounds were with residues important for trypanothione disulfide binding: Phe396, Pro398, Leu399, His461, Glu466, and Glu467, particularly His461, which participates in catalysis. Two compounds with the desired profiles, ZINC1033681 (Zn_C687) and ZINC10213096 (Zn_C216), decreased parasite growth by 20 % and 50 %, respectively. They behaved as mixed-type inhibitors of recombinant TR, with Ki values of 59 and 47 μM, respectively. This study provides a further understanding of the potential of phenothiazine derivatives as TR inhibitors.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.