首页 > 最新文献

Molecular Informatics最新文献

英文 中文
Cover Picture: (Mol. Inf. 9/2024) 封面图片:(Mol.Inf.9/2024)
IF 3.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-09-13 DOI: 10.1002/minf.202480901
{"title":"Cover Picture: (Mol. Inf. 9/2024)","authors":"","doi":"10.1002/minf.202480901","DOIUrl":"https://doi.org/10.1002/minf.202480901","url":null,"abstract":"","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The freedom space - a new set of commercially available molecules for hit discovery. 自由空间--一组新的商业化分子,用于发现新药。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-22 DOI: 10.1002/minf.202400114
Mykola V Protopopov, Valentyna V Tararina, Fanny Bonachera, Igor M Dzyuba, Anna Kapeliukha, Serhii Hlotov, Oleksii Chuk, Gilles Marcou, Olga Klimchuk, Dragos Horvath, Erik Yeghyan, Olena Savych, Olga O Tarkhanova, Alexandre Varnek, Yurii S Moroz

The advent of high-performance virtual screening techniques nowadays allows drug designers to explore ultra-large sets of candidate compounds in search of molecules predicted to have desired properties. However, the success of such an endeavor heavily relies on the pertinence (drug-likeness and, foremost, chemical feasibility) of these candidates, or otherwise, virtual screening will return valueless "hits", by the garbage in/garbage out principle. The huge popularity of the judiciously enumerated Enamine REAL Space is clear proof of the strength of this Big Data trend in drug discovery. Here we describe a new dataset of make-on-demand compounds called the Freedom space. It follows the principles of Enamine REAL Space and contains highly feasible molecules (synthesis success rate over 75 percent). However, the scaffold and chemography analysis revealed significant differences to both the REAL and biologically annotated compounds from the ChEMBL database. The Freedom Space is a significant extension of the REAL Space and can be utilized for a more comprehensive exploration of the synthetically feasible chemical space in hit finding and hit-to-lead campaigns.

如今,高性能虚拟筛选技术的出现使药物设计人员能够探索超大规模的候选化合物集,寻找具有预期特性的分子。然而,这种努力的成功在很大程度上依赖于这些候选化合物的相关性(药物相似性,最重要的是化学可行性),否则,根据垃圾进/垃圾出原则,虚拟筛选将返回无价值的 "命中"。经过审慎枚举的 Enamine REAL Space 的大受欢迎充分证明了大数据趋势在药物发现中的优势。在此,我们将介绍一个名为 "自由空间"(Freedom space)的按需制造化合物新数据集。它遵循恩胺真实空间的原则,包含高度可行的分子(合成成功率超过 75%)。然而,支架和化学分析显示,它与 REAL 和 ChEMBL 数据库中的生物注释化合物存在显著差异。自由空间是 REAL 空间的重要扩展,可用于在寻找新药和新药先导活动中更全面地探索合成上可行的化学空间。
{"title":"The freedom space - a new set of commercially available molecules for hit discovery.","authors":"Mykola V Protopopov, Valentyna V Tararina, Fanny Bonachera, Igor M Dzyuba, Anna Kapeliukha, Serhii Hlotov, Oleksii Chuk, Gilles Marcou, Olga Klimchuk, Dragos Horvath, Erik Yeghyan, Olena Savych, Olga O Tarkhanova, Alexandre Varnek, Yurii S Moroz","doi":"10.1002/minf.202400114","DOIUrl":"https://doi.org/10.1002/minf.202400114","url":null,"abstract":"<p><p>The advent of high-performance virtual screening techniques nowadays allows drug designers to explore ultra-large sets of candidate compounds in search of molecules predicted to have desired properties. However, the success of such an endeavor heavily relies on the pertinence (drug-likeness and, foremost, chemical feasibility) of these candidates, or otherwise, virtual screening will return valueless \"hits\", by the garbage in/garbage out principle. The huge popularity of the judiciously enumerated Enamine REAL Space is clear proof of the strength of this Big Data trend in drug discovery. Here we describe a new dataset of make-on-demand compounds called the Freedom space. It follows the principles of Enamine REAL Space and contains highly feasible molecules (synthesis success rate over 75 percent). However, the scaffold and chemography analysis revealed significant differences to both the REAL and biologically annotated compounds from the ChEMBL database. The Freedom Space is a significant extension of the REAL Space and can be utilized for a more comprehensive exploration of the synthetically feasible chemical space in hit finding and hit-to-lead campaigns.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Mol. Inf. 8/2024) 封面图片:(Mol.Inf. 8/2024)
IF 3.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-12 DOI: 10.1002/minf.202480801
{"title":"Cover Picture: (Mol. Inf. 8/2024)","authors":"","doi":"10.1002/minf.202480801","DOIUrl":"https://doi.org/10.1002/minf.202480801","url":null,"abstract":"","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst. 利用威尔金森催化剂模型对乙烯加氢反应路径网络进行化学分析。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-09 DOI: 10.1002/minf.202400063
Philippe Gantzer, Ruben Staub, Yu Harabuchi, Satoshi Maeda, Alexandre Varnek

Visualization and analysis of large chemical reaction networks become rather challenging when conventional graph-based approaches are used. As an alternative, we propose to use the chemical cartography ("chemography") approach, describing the data distribution on a 2-dimensional map. Here, the Generative Topographic Mapping (GTM) algorithm - an advanced chemography approach - has been applied to visualize the reaction path network of a simplified Wilkinson's catalyst-catalyzed hydrogenation containing some 105 structures generated with the help of the Artificial Force Induced Reaction (AFIR) method using either Density Functional Theory or Neural Network Potential (NNP) for potential energy surface calculations. Using new atoms permutation invariant 3D descriptors for structure encoding, we've demonstrated that GTM possesses the abilities to cluster structures that share the same 2D representation, to visualize potential energy surface, to provide an insight on the reaction path exploration as a function of time and to compare reaction path networks obtained with different methods of energy assessment.

如果采用传统的基于图形的方法,大型化学反应网络的可视化和分析就会变得相当具有挑战性。作为替代方案,我们建议使用化学制图("chemography")方法,在二维地图上描述数据分布。在这里,生成地形图(GTM)算法--一种先进的化学制图方法--被应用于简化的威尔金森催化剂催化氢化反应路径网络的可视化,该网络包含在人工力诱导反应(AFIR)方法的帮助下,利用密度泛函理论或神经网络势能(NNP)进行势能面计算而生成的约 105 个结构。通过使用新的原子排列不变三维描述符进行结构编码,我们证明了 GTM 具有对具有相同二维表示的结构进行聚类、可视化势能面、提供反应路径探索随时间变化的洞察力以及比较使用不同能量评估方法获得的反应路径网络的能力。
{"title":"Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst.","authors":"Philippe Gantzer, Ruben Staub, Yu Harabuchi, Satoshi Maeda, Alexandre Varnek","doi":"10.1002/minf.202400063","DOIUrl":"https://doi.org/10.1002/minf.202400063","url":null,"abstract":"<p><p>Visualization and analysis of large chemical reaction networks become rather challenging when conventional graph-based approaches are used. As an alternative, we propose to use the chemical cartography (\"chemography\") approach, describing the data distribution on a 2-dimensional map. Here, the Generative Topographic Mapping (GTM) algorithm - an advanced chemography approach - has been applied to visualize the reaction path network of a simplified Wilkinson's catalyst-catalyzed hydrogenation containing some 10<sup>5</sup> structures generated with the help of the Artificial Force Induced Reaction (AFIR) method using either Density Functional Theory or Neural Network Potential (NNP) for potential energy surface calculations. Using new atoms permutation invariant 3D descriptors for structure encoding, we've demonstrated that GTM possesses the abilities to cluster structures that share the same 2D representation, to visualize potential energy surface, to provide an insight on the reaction path exploration as a function of time and to compare reaction path networks obtained with different methods of energy assessment.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfotransferase-mediated phase II drug metabolism prediction of substrates and sites using accessibility and reactivity-based algorithms. 利用基于可及性和反应性的算法预测硫代转氨酶介导的 II 期药物代谢底物和位点。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-07 DOI: 10.1002/minf.202400008
Shivam Kumar Vyas, Avik Das, Upadhyayula Suryanarayana Murty, Vaibhav A Dixit

Sulphotransferases (SULTs) are a major phase II metabolic enzyme class contributing ~20 % to the Phase II metabolism of FDA-approved drugs. Ignoring the potential for SULT-mediated metabolism leaves a strong potential for drug-drug interactions, often causing late-stage drug discovery failures or black-boxed warnings on FDA labels. The existing models use only accessibility descriptors and machine learning (ML) methods for class and site of sulfonation (SOS) predictions for SULT. In this study, a variety of accessibility, reactivity, and hybrid models and algorithms have been developed to make accurate substrate and SOS predictions. Unlike the literature models, reactivity parameters for the aliphatic or aromatic hydroxyl groups (R/Ar-O-H), the Bond Dissociation Energy (BDE) gave accurate models with a True Positive Rate (TPR)=0.84 for SOS predictions. We offer mechanistic insights to explain these novel findings that are not recognized in the literature. The accessibility parameters like the ratio of Chemgauss4 Score (CGS) and Molecular Weight (MW) CGS/MW and distance from cofactor (Dis) were essential for class predictions and showed TPR=0.72. Substrates consistently had lower BDE, Dis, and CGS/MW than non-substrates. Hybrid models also performed acceptablely for SOS predictions. Using the best models, Algorithms gave an acceptable performance in class prediction: TPR=0.62, False Positive Rate (FPR)=0.24, Balanced accuracy (BA)=0.69, and SOS prediction: TPR=0.98, FPR=0.60, and BA=0.69. A rule-based method was added to improve the predictive performance, which improved the algorithm TPR, FPR, and BA. Validation using an external dataset of drug-like compounds gave class prediction: TPR=0.67, FPR=0.00, and SOS prediction: TPR=0.80 and FPR=0.44 for the best Algorithm. Comparisons with standard ML models also show that our algorithm shows higher predictive performance for classification on external datasets. Overall, these models and algorithms (SOS predictor) give accurate substrate class and site (SOS) predictions for SULT-mediated Phase II metabolism and will be valuable to the drug discovery community in academia and industry. The SOS predictor is freely available for academic/non-profit research via the GitHub link.

磺基转移酶(SULTs)是一种主要的 II 期代谢酶,在 FDA 批准药物的 II 期代谢中占约 20%。忽视 SULT 介导的潜在代谢可能会导致药物间的强烈相互作用,这往往会导致后期药物发现的失败或 FDA 标签上的黑框警告。现有模型仅使用可及性描述符和机器学习(ML)方法来预测 SULT 的类别和磺化位点(SOS)。本研究开发了多种可及性、反应性和混合模型及算法,以准确预测底物和 SOS。与文献模型不同的是,脂肪族或芳香族羟基(R/Ar-O-H)的反应性参数、键离解能(BDE)给出了准确的模型,SOS 预测的真阳性率(TPR)=0.84。我们从机理角度解释了这些在文献中未得到认可的新发现。可及性参数,如 Chemgauss4 Score(CGS)与分子量(MW)之比 CGS/MW 以及与辅助因子的距离(Dis),对于类别预测至关重要,其 TPR=0.72。底物的 BDE、Dis 和 CGS/MW 始终低于非底物。混合模型在 SOS 预测方面的表现也可以接受。使用最佳模型,算法在类别预测方面的表现可以接受:TPR=0.62,误报率(FPR)=0.24,平衡准确率(BA)=0.69,SOS 预测:SOS预测:TPR=0.98,FPR=0.60,BA=0.69。为提高预测性能,增加了基于规则的方法,从而提高了算法的 TPR、FPR 和 BA。使用外部类药物数据集进行验证后,得出了类预测结果:TPR=0.67, FPR=0.00, SOS 预测:最佳算法的 TPR=0.80 和 FPR=0.44。与标准 ML 模型的比较也表明,我们的算法对外部数据集的分类具有更高的预测性能。总之,这些模型和算法(SOS 预测器)能为 SULT 介导的第二阶段代谢提供准确的底物类别和位点(SOS)预测,对学术界和工业界的药物发现界很有价值。SOS 预测器可通过 GitHub 链接免费提供给学术/非营利研究使用。
{"title":"Sulfotransferase-mediated phase II drug metabolism prediction of substrates and sites using accessibility and reactivity-based algorithms.","authors":"Shivam Kumar Vyas, Avik Das, Upadhyayula Suryanarayana Murty, Vaibhav A Dixit","doi":"10.1002/minf.202400008","DOIUrl":"https://doi.org/10.1002/minf.202400008","url":null,"abstract":"<p><p>Sulphotransferases (SULTs) are a major phase II metabolic enzyme class contributing ~20 % to the Phase II metabolism of FDA-approved drugs. Ignoring the potential for SULT-mediated metabolism leaves a strong potential for drug-drug interactions, often causing late-stage drug discovery failures or black-boxed warnings on FDA labels. The existing models use only accessibility descriptors and machine learning (ML) methods for class and site of sulfonation (SOS) predictions for SULT. In this study, a variety of accessibility, reactivity, and hybrid models and algorithms have been developed to make accurate substrate and SOS predictions. Unlike the literature models, reactivity parameters for the aliphatic or aromatic hydroxyl groups (R/Ar-O-H), the Bond Dissociation Energy (BDE) gave accurate models with a True Positive Rate (TPR)=0.84 for SOS predictions. We offer mechanistic insights to explain these novel findings that are not recognized in the literature. The accessibility parameters like the ratio of Chemgauss4 Score (CGS) and Molecular Weight (MW) CGS/MW and distance from cofactor (Dis) were essential for class predictions and showed TPR=0.72. Substrates consistently had lower BDE, Dis, and CGS/MW than non-substrates. Hybrid models also performed acceptablely for SOS predictions. Using the best models, Algorithms gave an acceptable performance in class prediction: TPR=0.62, False Positive Rate (FPR)=0.24, Balanced accuracy (BA)=0.69, and SOS prediction: TPR=0.98, FPR=0.60, and BA=0.69. A rule-based method was added to improve the predictive performance, which improved the algorithm TPR, FPR, and BA. Validation using an external dataset of drug-like compounds gave class prediction: TPR=0.67, FPR=0.00, and SOS prediction: TPR=0.80 and FPR=0.44 for the best Algorithm. Comparisons with standard ML models also show that our algorithm shows higher predictive performance for classification on external datasets. Overall, these models and algorithms (SOS predictor) give accurate substrate class and site (SOS) predictions for SULT-mediated Phase II metabolism and will be valuable to the drug discovery community in academia and industry. The SOS predictor is freely available for academic/non-profit research via the GitHub link.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active learning approaches in molecule pKi prediction. 分子 pKi 预测中的主动学习方法。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-06 DOI: 10.1002/minf.202400154
I M Kashafutdinova, A Poyezzhayeva, T Gimadiev, T Madzhidov

During the early stages of drug design, identifying compounds with suitable bioactivities is crucial. Given the vast array of potential drug databases, it's feasible to assay only a limited subset of candidates. The optimal method for selecting the candidates, aiming to minimize the overall number of assays, involves an active learning (AL) approach. In this work, we benchmarked a range of AL strategies with two main objectives: (1) to identify a strategy that ensures high model performance and (2) to select molecules with desired properties using minimal assays. To evaluate the different AL strategies, we employed the simulated AL workflow based on "virtual" experiments. These experiments leveraged ChEMBL datasets, which come with known biological activity values for the molecules. Furthermore, for classification tasks, we proposed the hybrid selection strategy that unified both exploration and exploitation AL strategies into a single acquisition function, defined by parameters n and c. We have also shown that popular minimal margin and maximal variance selection approaches for exploration selection correspond to minimization of the hybrid acquisition function with n=1 and 2 respectively. The balance between the exploration and exploitation strategies can be adjusted using a coefficient (c), making the optimal strategy selection straightforward. The primary strength of the hybrid selection method lies in its adaptability; it offers the flexibility to adjust the criteria for molecule selection based on the specific task by modifying the value of the contribution coefficient. Our analysis revealed that, in regression tasks, AL strategies didn't succeed at ensuring high model performance, however, they were successful in selecting molecules with desired properties using minimal number of tests. In analogous experiments in classification tasks, exploration strategy and the hybrid selection function with a constant c<1 (for n=1) and c≤0.2 (for n=2) were effective in achieving the goal of constructing a high-performance predictive model using minimal data. When searching for molecules with desired properties, exploitation, and the hybrid function with c≥1 (n=1) and c≥0.7 (n=2) demonstrated efficiency identifying molecules in fewer iterations compared to random selection method. Notably, when the hybrid function was set to an intermediate coefficient value (c=0.7), it successfully addressed both tasks simultaneously.

在药物设计的早期阶段,确定具有合适生物活性的化合物至关重要。鉴于潜在药物数据库数量庞大,因此只能对有限的候选化合物进行检测。选择候选化合物的最佳方法是主动学习(AL)方法,目的是最大限度地减少化验的总次数。在这项工作中,我们对一系列主动学习策略进行了基准测试,主要目的有两个:(1)确定一种能确保高模型性能的策略;(2)使用最少的化验选择具有所需特性的分子。为了评估不同的 AL 策略,我们采用了基于 "虚拟 "实验的模拟 AL 工作流程。这些实验利用了 ChEMBL 数据集,其中包含了已知分子的生物活性值。此外,针对分类任务,我们提出了混合选择策略,将探索和利用 AL 策略统一为一个单一的获取函数,该函数由参数 n 和 c 定义。我们还证明,用于探索选择的流行最小边际和最大方差选择方法分别对应于混合获取函数的最小化(n=1 和 2)。探索策略和开发策略之间的平衡可以通过系数(c)进行调整,从而使最优策略选择变得简单明了。混合选择方法的主要优势在于其适应性;它可以根据具体任务,通过修改贡献系数的值来灵活调整分子选择的标准。我们的分析表明,在回归任务中,AL 策略并不能成功地确保高模型性能,但却能用最少的测试次数成功地选择出具有所需特性的分子。在分类任务的类似实验中,探索策略和具有常数 c
{"title":"Active learning approaches in molecule pKi prediction.","authors":"I M Kashafutdinova, A Poyezzhayeva, T Gimadiev, T Madzhidov","doi":"10.1002/minf.202400154","DOIUrl":"https://doi.org/10.1002/minf.202400154","url":null,"abstract":"<p><p>During the early stages of drug design, identifying compounds with suitable bioactivities is crucial. Given the vast array of potential drug databases, it's feasible to assay only a limited subset of candidates. The optimal method for selecting the candidates, aiming to minimize the overall number of assays, involves an active learning (AL) approach. In this work, we benchmarked a range of AL strategies with two main objectives: (1) to identify a strategy that ensures high model performance and (2) to select molecules with desired properties using minimal assays. To evaluate the different AL strategies, we employed the simulated AL workflow based on \"virtual\" experiments. These experiments leveraged ChEMBL datasets, which come with known biological activity values for the molecules. Furthermore, for classification tasks, we proposed the hybrid selection strategy that unified both exploration and exploitation AL strategies into a single acquisition function, defined by parameters n and c. We have also shown that popular minimal margin and maximal variance selection approaches for exploration selection correspond to minimization of the hybrid acquisition function with n=1 and 2 respectively. The balance between the exploration and exploitation strategies can be adjusted using a coefficient (c), making the optimal strategy selection straightforward. The primary strength of the hybrid selection method lies in its adaptability; it offers the flexibility to adjust the criteria for molecule selection based on the specific task by modifying the value of the contribution coefficient. Our analysis revealed that, in regression tasks, AL strategies didn't succeed at ensuring high model performance, however, they were successful in selecting molecules with desired properties using minimal number of tests. In analogous experiments in classification tasks, exploration strategy and the hybrid selection function with a constant c<1 (for n=1) and c≤0.2 (for n=2) were effective in achieving the goal of constructing a high-performance predictive model using minimal data. When searching for molecules with desired properties, exploitation, and the hybrid function with c≥1 (n=1) and c≥0.7 (n=2) demonstrated efficiency identifying molecules in fewer iterations compared to random selection method. Notably, when the hybrid function was set to an intermediate coefficient value (c=0.7), it successfully addressed both tasks simultaneously.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors. 基于组合对接的 SARS-CoV-2 主要蛋白酶抑制剂虚拟筛选。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-01 Epub Date: 2024-07-08 DOI: 10.1002/minf.202300279
Anastasia D Fomina, Victoria I Uvarova, Liubov I Kozlovskaya, Vladimir A Palyulin, Dmitry I Osolodkin, Aydar A Ishmukhametov

During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.

在 COVID-19 大流行的最初几年,冠状病毒药物靶点的 X 射线结构以前所未有的速度获得,在不到一年的时间里就有数百个 PDB 文件沉积。严重急性呼吸系统综合征相关冠状病毒 2(SARS-CoV-2)的主要蛋白酶(Mpro)是直接作用抗病毒药物的主要验证靶点。因此,为对接驱动的虚拟筛选活动选择最佳的 Mpro 结构组合并非易事,需要一种系统的自动化方法。在此,我们报告了一种基于活性位点 RMSD 的半自动程序,该程序从 SARS-CoV-2 Mpro 晶体数据中选择组合结构,并对其抑制剂进行虚拟筛选。我们将该程序与其他组合筛选方法进行了比较,并在人工挑选和同行评议的活性注释库的帮助下进行了验证。对非共价 Mpro 抑制剂的前瞻性虚拟筛选产生了一种新的噻吩嘧啶酮衍生物化学类型,其酶抑制作用已得到实验证实。
{"title":"Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors.","authors":"Anastasia D Fomina, Victoria I Uvarova, Liubov I Kozlovskaya, Vladimir A Palyulin, Dmitry I Osolodkin, Aydar A Ishmukhametov","doi":"10.1002/minf.202300279","DOIUrl":"10.1002/minf.202300279","url":null,"abstract":"<p><p>During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library. 利用 Molpher 探索化学空间:生成并评估糖皮质激素受体配体库。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-01 Epub Date: 2024-07-09 DOI: 10.1002/minf.202300316
M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil

Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.

在现代化学信息学研究中,化学空间的计算探索对于加速发现新的生物活性化合物至关重要。在本研究中,我们详细分析了分子生成器 Molpher 生成的潜在糖皮质激素受体(GR)配体化学库。为了生成靶向 GR 库并构建分类模型,我们利用了 ChEMBL 数据库以及内部 IMG 库中的结构。将目标 GR 配体库的组成与随机抽样化学空间的参考库进行了比较。采用随机森林模型确定配体的生物活性,并利用保形预测将其适用范围纳入其中。结果表明,与随机库相比,GR 库明显富含 GR 配体。此外,一项前瞻性分析表明,Molpher 成功地设计出了一些化合物,这些化合物随后被实验证实对 GR 具有活性。同时还发现了 34 种潜在的新 GR 配体。此外,这项研究的一个重要贡献是建立了一套全面的工作流程,用于评估通过计算生成的配体,特别是那些对具有潜在活性的靶标具有对接挑战性的配体。
{"title":"Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library.","authors":"M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil","doi":"10.1002/minf.202300316","DOIUrl":"10.1002/minf.202300316","url":null,"abstract":"<p><p>Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating pharmacophore space to identify activity discontinuities: A case study with BCR-ABL. 浏览药理空间以识别活性不连续性:BCR-ABL 案例研究。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-01 Epub Date: 2024-07-09 DOI: 10.1002/minf.202400050
Maroua Lejmi, Damien Geslin, Ronan Bureau, Bertrand Cuissart, Ilef Ben Slima, Nida Meddouri, Amel Borgi, Jean-Luc Lamotte, Alban Lepailleur

The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR-ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure-activity relationships analysis.

化学空间的探索是化学信息学的一个基本方面,尤其是在探索大型化合物数据集以将化学结构与分子性质联系起来时。在本研究中,我们扩展了之前在药效水平上的化学空间可视化工作。我们不再使用传统的亲和性二元分类法(活性与非活性),而是引入了一种细化方法,根据化合物的活性水平将其分为四个不同的类别:超级活性、非常活性、活性和非活性。这种分类方法丰富了应用于药效空间的颜色方案,药效假设的颜色表示由相关化合物驱动。以 BCR-ABL 酪氨酸激酶为例,我们发现了与药理活性不连续性相对应的有趣区域,为结构-活性关系分析提供了宝贵的见解。
{"title":"Navigating pharmacophore space to identify activity discontinuities: A case study with BCR-ABL.","authors":"Maroua Lejmi, Damien Geslin, Ronan Bureau, Bertrand Cuissart, Ilef Ben Slima, Nida Meddouri, Amel Borgi, Jean-Luc Lamotte, Alban Lepailleur","doi":"10.1002/minf.202400050","DOIUrl":"10.1002/minf.202400050","url":null,"abstract":"<p><p>The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR-ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure-activity relationships analysis.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct binding hotspots for natural and synthetic agonists of FFA4 from in silico approaches. 从硅学方法看天然和合成 FFA4 激动剂的不同结合热点。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-07-24 DOI: 10.1002/minf.202400046
Guillaume Patient, Corentin Bedart, Naim A Khan, Nicolas Renault, Amaury Farce

FFA4 has gained interest in recent years since its deorphanization in 2005 and the characterization of the Free Fatty Acids receptors family for their therapeutic potential in metabolic disorders. The expression of FFA4 (also known as GPR120) in numerous organs throughout the human body makes this receptor a highly potent target, particularly in fat sensing and diet preference. This offers an attractive approach to tackle obesity and related metabolic diseases. Recent cryo-EM structures of the receptor have provided valuable information for a potential active state although the previous studies of FFA4 presented diverging information. We performed molecular docking and molecular dynamics simulations of four agonist ligands, TUG-891, Linoleic acid, α-Linolenic acid, and Oleic acid, based on a homology model. Our simulations, which accumulated a total of 2 μs of simulation, highlighted two binding hotspots at Arg992.64 and Lys293 (ECL3). The results indicate that the residues are located in separate areas of the binding pocket and interact with various types of ligands, implying different potential active states of FFA4 and a highly adaptable binding intra-receptor pocket. This article proposes additional structural characteristics and mechanisms for agonist binding that complement the experimental structures.

自 2005 年 FFA4 被非形态化,以及游离脂肪酸受体家族在新陈代谢疾病中的治疗潜力被定性以来,FFA4 近年来越来越受到人们的关注。FFA4(又称 GPR120)在人体众多器官中的表达使该受体成为一个非常有效的靶点,尤其是在脂肪感应和饮食偏好方面。这为解决肥胖和相关代谢疾病提供了一种极具吸引力的方法。尽管以前对 FFA4 的研究提供了不同的信息,但最近该受体的低温电子显微镜结构为潜在的活性状态提供了宝贵的信息。我们基于同源模型对四种激动剂配体 TUG-891、亚油酸、α-亚麻酸和油酸进行了分子对接和分子动力学模拟。我们的模拟总共耗时 2 μs,突出显示了 Arg992.64 和 Lys293(ECL3)处的两个结合热点。结果表明,这两个残基分别位于结合口袋的不同区域,并与不同类型的配体相互作用,这意味着 FFA4 具有不同的潜在活性状态和一个具有高度适应性的受体内结合口袋。本文提出了与实验结构互补的其他结构特征和激动剂结合机制。
{"title":"Distinct binding hotspots for natural and synthetic agonists of FFA4 from in silico approaches.","authors":"Guillaume Patient, Corentin Bedart, Naim A Khan, Nicolas Renault, Amaury Farce","doi":"10.1002/minf.202400046","DOIUrl":"https://doi.org/10.1002/minf.202400046","url":null,"abstract":"<p><p>FFA4 has gained interest in recent years since its deorphanization in 2005 and the characterization of the Free Fatty Acids receptors family for their therapeutic potential in metabolic disorders. The expression of FFA4 (also known as GPR120) in numerous organs throughout the human body makes this receptor a highly potent target, particularly in fat sensing and diet preference. This offers an attractive approach to tackle obesity and related metabolic diseases. Recent cryo-EM structures of the receptor have provided valuable information for a potential active state although the previous studies of FFA4 presented diverging information. We performed molecular docking and molecular dynamics simulations of four agonist ligands, TUG-891, Linoleic acid, α-Linolenic acid, and Oleic acid, based on a homology model. Our simulations, which accumulated a total of 2 μs of simulation, highlighted two binding hotspots at Arg99<sup>2.64</sup> and Lys293 (ECL3). The results indicate that the residues are located in separate areas of the binding pocket and interact with various types of ligands, implying different potential active states of FFA4 and a highly adaptable binding intra-receptor pocket. This article proposes additional structural characteristics and mechanisms for agonist binding that complement the experimental structures.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1