Arshi Waseem, Abdul Quaiyoom Khan, Mohsin Ali Khan, Rehan Khan, Shahab Uddin, Johannes Boltze, Syed Shadab Raza
{"title":"Unveiling the Therapeutic Potential of Non-Coding RNAs in Stroke-Induced Tissue Regeneration.","authors":"Arshi Waseem, Abdul Quaiyoom Khan, Mohsin Ali Khan, Rehan Khan, Shahab Uddin, Johannes Boltze, Syed Shadab Raza","doi":"10.1093/stmcls/sxad062","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a major contributor to mortality and impairment on a global scale, with few effective treatments available. Aberrant expression of various non-coding RNAs (ncRNAs) has been identified after stroke onset, impacting neurogenesis, angiogenesis, apoptosis, and autophagy. The roles and mechanisms of ncRNAs hold great promise for future ischemic stroke treatments, as they could modify stroke impact and course on a well-controllable molecular level. Exploring the functions and underlying mechanisms of ncRNAs after stroke has the potential to unveil novel therapeutic targets for the treatment of stroke and may also pave the way toward novel and more precise diagnostic options for stroke and stroke outcomes. This review emphasizes the importance of ncRNAs in the treatment of stroke and their potential as therapeutic targets.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxad062","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Stroke is a major contributor to mortality and impairment on a global scale, with few effective treatments available. Aberrant expression of various non-coding RNAs (ncRNAs) has been identified after stroke onset, impacting neurogenesis, angiogenesis, apoptosis, and autophagy. The roles and mechanisms of ncRNAs hold great promise for future ischemic stroke treatments, as they could modify stroke impact and course on a well-controllable molecular level. Exploring the functions and underlying mechanisms of ncRNAs after stroke has the potential to unveil novel therapeutic targets for the treatment of stroke and may also pave the way toward novel and more precise diagnostic options for stroke and stroke outcomes. This review emphasizes the importance of ncRNAs in the treatment of stroke and their potential as therapeutic targets.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.